1. Edwards CA, Ferguson-Smith AC. Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol. 2007. 19:281–289.
Article
2. Verona RI, Mann MR, Bartolomei MS. Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol. 2003. 19:237–259.
Article
3. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001. 293:1089–1093.
Article
4. Ideraabdullah FY, Vigneau S, Bartolomei MS. Genomic imprinting mechanisms in mammals. Mutat Res. 2008. 647:77–85.
Article
5. Frost JM, Moore GE. The importance of imprinting in the human placenta. PLoS Genet. 2010. 6:e1001015.
Article
6. Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell. 2012. 148:816–831.
Article
7. Peters J. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet. 2014. 15:517–530.
Article
8. Morison IM, Ramsay JP, Spencer HG. A census of mammalian imprinting. Trends Genet. 2005. 21:457–465.
Article
9. Ko JY, Park CH, Koh HC, Cho YH, Kyhm JH, Kim YS, Lee I, Lee YS, Lee SH. Human embryonic stem cell-derived neural precursors as a continuous, stable, and on-demand source for human dopamine neurons. J Neurochem. 2007. 103:1417–1429.
Article
10. Mahmood A, Harkness L, Schrøder HD, Abdallah BM, Kassem M. Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542. J Bone Miner Res. 2010. 25:1216–1233.
Article
11. Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, Meng S, Chen Y, Zhou R, Song X, Guo Y, Ding M, Deng H. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007. 45:1229–1239.
Article
12. Park SW, Kim J, Park JL, Ko JY, Im I, Do HS, Kim H, Tran NT, Lee SH, Kim YS, Cho YS, Lee DR, Han YM. Variable allelic expression of imprinted genes in human pluripotent stem cells during differentiation into specialized cell types in vitro. Biochem Biophys Res Commun. 2014. 446:493–498.
Article
13. Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 2000. 405:482–485.
Article
14. Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, Kohda T, Ogura A, Yokoyama M, Kaneko-Ishino T, Ishino F. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet. 2006. 38:101–106.
Article
15. Berg JS, Lin KK, Sonnet C, Boles NC, Weksberg DC, Nguyen H, Holt LJ, Rickwood D, Daly RJ, Goodell MA. Imprinted genes that regulate early mammalian growth are coexpressed in somatic stem cells. PLoS One. 2011. 6:e26410.
Article
16. Sun BW, Yang AC, Feng Y, Sun YJ, Zhu Yf, Zhang Y, Jiang H, Li CL, Gao FR, Zhang ZH, Wang WC, Kong XY, Jin G, Fu SJ, Jin Y. Temporal and parental-specific expression of imprinted genes in a newly derived Chinese human embryonic stem cell line and embryoid bodies. Hum Mol Genet. 2006. 15:65–75.
Article
17. Onyango P, Jiang S, Uejima H, Shamblott MJ, Gearhart JD, Cui H, Feinberg AP. Monoallelic expression and methylation of imprinted genes in human and mouse embryonic germ cell lineages. Proc Natl Acad Sci U S A. 2002. 99:10599–10604.
Article
18. Freed WJ, Chen J, Bäckman CM, Schwartz CM, Vazin T, Cai J, Spivak CE, Lupica CR, Rao MS, Zeng X. Gene expression profile of neuronal progenitor cells derived from hESCs: activation of chromosome 11p15.5 and comparison to human dopaminergic neurons. PLoS One. 2008. 3:e1422.
Article