1. Solberg TD, Holly FE, De Salles AA, Wallace RE, Smathers JB. Implications of tissue heterogeneity for radiosurgery in head and neck tumors. Int J Radiat Oncol Biol Phys. 32(1):235–239. 1995.
Article
2. Kan WK, Wu PM, Leung HT, et al. The effect of the nasopharyngeal air cavity on x-ray interface doses. Phys Med Biol. 43(3):529–537. 1998.
Article
3. Waldron JN, O'Sullivan B, Warde P, et al. Ethmoid sinus cancer: twenty-nine cases managed with primary radiation therapy. Int J Radiat Oncol Biol Phys. 41(2):361–369. 1998.
Article
4. Davidson SE, Ibbott GS, Prado KL, Dong L, Liao Z, Followill DS. Accuracy of two heterogeneity dose calculation algorithms for IMRT in treatment plans designed using an anthropomorphic thorax phantom. Med Phys. 34(5):1850–1857. 2007.
Article
5. Tillikainen L, Helminen H, Torsti T, et al. A 3D pencil- beam-based superposition algorithm for photon dose calculation in heterogeneous media. Phys Med Biol. 53(14):3821–3839. 2008.
6. Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys. 38(5):2651–2664. 2011.
Article
7. Takahashi W, Yamashita H, Saotome N, et al. Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT): comparison of commercially available Monte Carlo dose calculation with other algorithms. Radiat Oncol. 7:20. 2012.
Article
8. Teh BS, Mai WY, Uhl BM, et al. Intensity-modulated radiation therapy (IMRT) for prostate cancer with the use of a rectal balloon for prostate immobilization: acute toxicity and dose-volume analysis. Int J Radiat Oncol Biol Phys. 49(3):705–712. 2001.
Article
9. McGary JE, Teh BS, Butler EB, Grant W 3rd. Prostate immobilization using a rectal balloon. J Appl Clin Med Phys. 3(1):6–11. 2002.
Article
10. Wachter S, Gerstner N, Dorner D, et al. The influence of a rectal balloon tube as internal immobilization device on variations of volumes and dose-volume histograms during treatment course of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 52(1):91–100. 2002.
Article
11. Miralbell R, Molla M, Arnalte R, et al. Target repositioning optimization in prostate cancer: is intensity-modulated radiotherapy under stereotactic conditions feasible? Int J Radiat Oncol Biol Phys. 59(2):366–371. 2004.
Article
12. Teh BS, Dong L, McGary JE, Mai WY, Grant W 3rd, Butler EB. Rectal wall sparing by dosimetric effect of rectal balloon used during intensity-modulated radiation therapy (IMRT) for prostate cancer. Med Dosim. 30(1):25–30. 2005.
Article
13. Song JS, Court LE, Cormack RA. Monte Carlo calculation of rectal dose when using an intrarectal balloon during prostate radiation therapy. Med Dosim. 32(3):151–156. 2007.
Article
14. Hardcastle N, Metcalfe PE, Rosenfeld AB, Tome WA. Endorectal balloon cavity dosimetry in a phantom: performance under IMRT and helical tomotherapy beams. Radiother Oncol. 92(1):48–56. 2009.
Article
15. Smeenk RJ, Teh BS, Butler EB, van Lin EN, Kaanders JH. Is there a role for endorectal balloons in prostate radiotherapy? A systematic review. Radiother Oncol. 95(3):277–282. 2010.
Article
16. Srivastava SP, Das IJ, Kumar A, Johnstone PA, Cheng CW. Impact of rectal balloon-filling materials on the dosimetry of prostate and organs at risk in photon beam therapy. J Appl Clin Med Phys. 14(1):81–91. 2013.
Article
17. ICRU Report 62. International Commission on Radiation Units and Measurements. Prescribing, Recording, and Reporting Photon Beam Therapy (supplement to ICRU Report 50), Bethesda, MD. 1999.
18. de Crevoisier R, Tucker SL, Dong L, et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 62(4):965–973. (2005.
Article