Yonsei Med J.  2014 Sep;55(5):1400-1405. 10.3349/ymj.2014.55.5.1400.

Presence of a Nail in the Medullary Canal; Is It Enough to Prevent Femoral Neck Shortening in Trochanteric Fracture?

Affiliations
  • 1Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon, Korea.
  • 2Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Korea.
  • 3Department of Orthopedic Surgery, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Korea. kyang@yuhs.ac

Abstract

PURPOSE
Presence of a cephalomedullary nail (CMN) in the medullary canal has been thought as advantageous in the control of femoral neck shortening (FNS) and lag screw sliding in trochanteric fracture compared to extramedullary fixation system. However, researches on the factors that influence the degree of FNS after cephalomedullary nailing are lacking.
MATERIALS AND METHODS
We observed 95 patients (mean age, 75+/-2.8 years) with trochanteric fractures who were treated with a CMN, and evaluated the relationship between FNS and patient factors including age, gender, fracture type (AO/OTA), bone mineral density, medullary canal diameter, canal occupancy ratio (COR=nail size/canal diameter), and tip-apex distance using initial, immediate postoperative, and follow-up radiography.
RESULTS
Univariate regression analyses revealed that the degree of FNS was significantly correlated with fracture type (A1 versus A3, p<0.001), medullary canal diameter (p<0.001), and COR (p<0.001). Multiple regression analyses revealed that FNS was strongly correlated with fracture type (p<0.001) and COR (p<0.001).
CONCLUSION
Presence of a CMN in the medullary canal could not effectively prevent FNS in patients with low COR and in A3 type fracture.

Keyword

Intertrochanteric fracture; femoral neck shortening; lag screw sliding

MeSH Terms

Aged
*Bone Nails
Female
Femur Neck/*radiography
Hip Fractures/radiography/*surgery
Humans
Male
Orthopedic Procedures/*methods
Regression Analysis

Figure

  • Fig. 1 COR versus femoral neck shortening is shown on a scatterplot. The lower the ratio, the more shortening of the femoral neck. Black dots indicate cases of A3 type fractures. COR, canal occupancy ratio.


Cited by  1 articles

The Effects of Extramedullary Reduction in Unstable Intertrochanteric Fracture: A Biomechanical Study Using Cadaver Bone
Young Chang Park, Soon Phil Yoon, Kyu Hyun Yang
J Korean Fract Soc. 2018;31(3):79-86.    doi: 10.12671/jkfs.2018.31.3.79.


Reference

1. Kyle RF, Cabanela ME, Russell TA, Swiontkowski MF, Winquist RA, Zuckerman JD, et al. Fractures of the proximal part of the femur. Instr Course Lect. 1995; 44:227–253.
2. Davis TR, Sher JL, Horsman A, Simpson M, Porter BB, Checketts RG. Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Joint Surg Br. 1990; 72:26–31.
Article
3. Gotfried Y. The lateral trochanteric wall: a key element in the reconstruction of unstable pertrochanteric hip fractures. Clin Orthop Relat Res. 2004; 82–86.
4. Zlowodzki M, Ayieni O, Petrisor BA, Bhandari M. Femoral neck shortening after fracture fixation with multiple cancellous screws: incidence and effect on function. J Trauma. 2008; 64:163–169.
Article
5. Boraiah S, Paul O, Hammoud S, Gardner MJ, Helfet DL, Lorich DG. Predictable healing of femoral neck fractures treated with intraoperative compression and length-stable implants. J Trauma. 2010; 69:142–147.
Article
6. Song HK, Lee JJ, Oh HC, Yang KH. Clinical implication of subgrouping in valgus femoral neck fractures: comparison of 31-B1.1 with 31-B1.2 fractures using the OTA/AO classification. J Orthop Trauma. 2013; 27:677–682.
7. Weil YA, Khoury A, Zuaiter I, Safran O, Liebergall M, Mosheiff R. Femoral neck shortening and varus collapse after navigated fixation of intracapsular femoral neck fractures. J Orthop Trauma. 2012; 26:19–23.
Article
8. Anglen JO, Weinstein JN. American Board of Orthopaedic Surgery Research Committee. Nail or plate fixation of intertrochanteric hip fractures: changing pattern of practice. A review of the American Board of Orthopaedic Surgery Database. J Bone Joint Surg Am. 2008; 90:700–707.
Article
9. Lee YK, Yoon BH, Nho JH, Kim KC, Ha YC, Koo KH. National trends of surgical treatment for intertrochanteric fractures in Korea. J Korean Med Sci. 2013; 28:1407–1408.
Article
10. Watanabe Y, Minami G, Takeshita H, Fujii T, Takai S, Hirasawa Y. Migration of the lag screw within the femoral head: a comparison of the intramedullary hip screw and the Gamma Asia-Pacific nail. J Orthop Trauma. 2002; 16:104–107.
Article
11. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am. 1995; 77:1058–1064.
Article
12. Meislin RJ, Zuckerman JD, Kummer FJ, Frankel VH. A biomechanical analysis of the sliding hip screw: the question of plate angle. J Orthop Trauma. 1990; 4:130–136.
13. Steinberg GG, Desai SS, Kornwitz NA, Sullivan TJ. The intertrochanteric hip fracture. A retrospective analysis. Orthopedics. 1988; 11:265–273.
Article
14. Barrios C, Broström LA, Stark A, Walheim G. Healing complications after internal fixation of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma. 1993; 7:438–442.
Article
15. Hornby R, Evans JG, Vardon V. Operative or conservative treatment for trochanteric fractures of the femur. A randomised epidemiological trial in elderly patients. J Bone Joint Surg Br. 1989; 71:619–623.
Article
16. Ahrengart L, Törnkvist H, Fornander P, Thorngren KG, Pasanen L, Wahlström P, et al. A randomized study of the compression hip screw and Gamma nail in 426 fractures. Clin Orthop Relat Res. 2002; 209–222.
Article
17. Barton TM, Gleeson R, Topliss C, Greenwood R, Harries WJ, Chesser TJ. A comparison of the long gamma nail with the sliding hip screw for the treatment of AO/OTA 31-A2 fractures of the proximal part of the femur: a prospective randomized trial. J Bone Joint Surg Am. 2010; 92:792–798.
Article
18. Baumgaertner MR, Curtin SL, Lindskog DM. Intramedullary versus extramedullary fixation for the treatment of intertrochanteric hip fractures. Clin Orthop Relat Res. 1998; 87–94.
Article
19. Bridle SH, Patel AD, Bircher M, Calvert PT. Fixation of intertrochanteric fractures of the femur. A randomised prospective comparison of the gamma nail and the dynamic hip screw. J Bone Joint Surg Br. 1991; 73:330–334.
Article
20. Crawford CH, Malkani AL, Cordray S, Roberts CS, Sligar W. The trochanteric nail versus the sliding hip screw for intertrochanteric hip fractures: a review of 93 cases. J Trauma. 2006; 60:325–328.
Article
21. Hardy DC, Descamps PY, Krallis P, Fabeck L, Smets P, Bertens CL, et al. Use of an intramedullary hip-screw compared with a compression hip-screw with a plate for intertrochanteric femoral fractures. A prospective, randomized study of one hundred patients. J Bone Joint Surg Am. 1998; 80:618–630.
Article
22. Hoffmann R, Schmidmaier G, Schulz R, Schütz M, Südkamp NP. [Classic nail versus DHS. A prospective randomised study of fixation of trochanteric femur fractures]. Unfallchirurg. 1999; 102:182–190.
Article
23. Leung KS, So WS, Shen WY, Hui PW. Gamma nails and dynamic hip screws for peritrochanteric fractures. A randomised prospective study in elderly patients. J Bone Joint Surg Br. 1992; 74:345–351.
Article
24. O'Brien PJ, Meek RN, Blachut PA, Broekhuyse HM, Sabharwal S. Fixation of intertrochanteric hip fractures: gamma nail versus dynamic hip screw. A randomized, prospective study. Can J Surg. 1995; 38:516–520.
25. Parker MJ, Handoll HH. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev. 2010; CD000093.
Article
26. Radford PJ, Needoff M, Webb JK. A prospective randomised comparison of the dynamic hip screw and the gamma locking nail. J Bone Joint Surg Br. 1993; 75:789–793.
Article
27. Saudan M, Lübbeke A, Sadowski C, Riand N, Stern R, Hoffmeyer P. Pertrochanteric fractures: is there an advantage to an intramedullary nail?: a randomized, prospective study of 206 patients comparing the dynamic hip screw and proximal femoral nail. J Orthop Trauma. 2002; 16:386–393.
Article
28. Duan Y, Beck TJ, Wang XF, Seeman E. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res. 2003; 18:1766–1774.
Article
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr