J Korean Med Sci.  2014 Jan;29(1):23-31. 10.3346/jkms.2014.29.1.23.

A Randomized, Open-Label, Multicenter Trial for the Safety and Efficacy of Adult Mesenchymal Stem Cells after Acute Myocardial Infarction

Affiliations
  • 1Division of Cardiology, Yonsei University Wonju College of Medicine, Wonju, Korea. carshlee@yonsei.ac.kr
  • 2Department of Radiology, Yonsei University Wonju College of Medicine, Wonju, Korea.
  • 3Department of Cardiology, Gachon Medical School, Gil Medical Center, Incheon, Korea.
  • 4Division of Cardiology, Department of Internal Medicine, Inha University Hospital, Incheon, Korea.
  • 5Yonsei Cardiovascular Center and Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea.
  • 6Division of Cardiology, Department of Medicine, St. Luke's Roosevelt Hospital, Columbia University College of Physicians and Surgeons, New York, NY, USA.

Abstract

Recent studies suggest that the intracoronary administration of bone marrow (BM)-derived mesenchymal stem cells (MSCs) may improve left ventricular function in patients with acute myocardial infarction (AMI). However, there is still argumentative for the safety and efficacy of MSCs in the AMI setting. We thus performed a randomized pilot study to investigate the safety and efficacy of MSCs in patients with AMI. Eighty patients with AMI after successful reperfusion therapy were randomly assigned and received an intracoronary administration of autologous BM-derived MSCs into the infarct related artery at 1 month. During follow-up period, 58 patients completed the trial. The primary endpoint was changes in left ventricular ejection fraction (LVEF) by single-photon emission computed tomography (SPECT) at 6 month. We also evaluated treatment-related adverse events. The absolute improvement in the LVEF by SPECT at 6 month was greater in the BM-derived MSCs group than in the control group (5.9%+/-8.5% vs 1.6%+/-7.0%; P=0.037). There was no treatment-related toxicity during intracoronary administration of MSCs. No significant adverse cardiovascular events occurred during follow-up. In conclusion, the intracoronary infusion of human BM-derived MSCs at 1 month is tolerable and safe with modest improvement in LVEF at 6-month follow-up by SPECT. (ClinicalTrials.gov registration number: NCT01392105)

Keyword

Mesenchymal Stem Cells; Myocardial Infarction; Ventricular Dysfunction, Left

MeSH Terms

Adult
Aged
Bone Marrow Cells/cytology
Cell- and Tissue-Based Therapy/*adverse effects
Echocardiography
Female
Heart/physiopathology
Humans
Male
Mesenchymal Stem Cell Transplantation/*adverse effects
Mesenchymal Stromal Cells/*cytology
Middle Aged
Myocardial Infarction/*therapy
Pilot Projects
Stroke Volume
Tomography, Emission-Computed, Single-Photon
Transplantation, Autologous
Treatment Outcome
Ventricular Function, Left
Young Adult

Figure

  • Fig. 1 Study design.

  • Fig. 2 Impact of MSCs treatment on LVEF by SPECT. MSCs, mesenchymal stem cells; LVEF, left ventricular ejection fraction; SPECT, single-photon emission computed tomography.


Cited by  3 articles

Challenges and Limitations of Strategies to Promote Therapeutic Potential of Human Mesenchymal Stem Cells for Cell-Based Cardiac Repair
Thi Van Anh Bui, Ji-Won Hwang, Jung-Hoon Lee, Hun-Jun Park, Kiwon Ban
Korean Circ J. 2021;51(2):97-113.    doi: 10.4070/kcj.2020.0518.

From Bench to Market: Preparing Human Pluripotent Stem Cells Derived Cardiomyocytes for Various Applications
Sung-Hwan Moon, Daekyeong Bae, Taek-Hee Jung, Eun-Bin Chung, Young-Hoon Jeong, Soon-Jung Park, Hyung-Min Chung
Int J Stem Cells. 2017;10(1):1-11.    doi: 10.15283/ijsc17024.

Mesenchymal Stem Cell Therapy for Ischemic Heart Disease: Systematic Review and Meta-analysis
Hyunsuk Jeong, Hyeon Woo Yim, Hun-Jun Park, Youngseung Cho, Hanter Hong, Na Jin Kim, Il-Hoan Oh
Int J Stem Cells. 2018;11(1):1-12.    doi: 10.15283/ijsc17061.


Reference

1. Gibson CM, Pride YB, Frederick PD, Pollack CV Jr, Canto JG, Tiefenbrunn AJ, Weaver WD, Lambrew CT, French WJ, Peterson ED, et al. Trends in reperfusion strategies, door-to-needle and door-to-balloon times, and in-hospital mortality among patients with ST-segment elevation myocardial infarction enrolled in the National Registry of Myocardial Infarction from 1990 to 2006. Am Heart J. 2008; 156:1035–1044.
2. McManus DD, Gore J, Yarzebski J, Spencer F, Lessard D, Goldberg RJ. Recent trends in the incidence, treatment, and outcomes of patients with STEMI and NSTEMI. Am J Med. 2011; 124:40–47.
3. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, et al. Heart disease and stroke statistics: 2011 update: a report from the American Heart Association. Circulation. 2011; 123:e18–e209.
4. Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J. 2008; 29:1807–1818.
5. Parekkadan B, Milwid JM. Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng. 2010; 12:87–117.
6. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009; 54:2277–2286.
7. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004; 364:141–148.
8. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangschau A, Fjeld JG, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006; 355:1199–1209.
9. Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, Yu J, Corti R, Mathey DG, Hamm CW, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006; 355:1210–1221.
10. Meluzín J, Mayer J, Groch L, Janousek S, Hornácek I, Hlinomaz O, Kala P, Panovský R, Prásek J, Kamínek M, et al. Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am Heart J. 2006; 152:975.e9–975.e15.
11. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, Kalantzi M, Herbots L, Sinnaeve P, Dens J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006; 367:113–121.
12. Ge J, Li Y, Qian J, Shi J, Wang Q, Niu Y, Fan B, Liu X, Zhang S, Sun A, et al. Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart. 2006; 92:1764–1767.
13. Strauer BE, Yousef M, Schannwell CM. The acute and long-term effects of intracoronary Stem cell Transplantation in 191 patients with chronic heARt failure: the STAR-heart study. Eur J Heart Fail. 2010; 12:721–729.
14. Pereira MJ, Carvalho IF, Karp JM, Ferreira LS. Sensing the cardiac environment: exploiting cues for regeneration. J Cardiovasc Transl Res. 2011; 4:616–630.
15. Assmus B, Tonn T, Seeger FH, Yoon CH, Leistner D, Klotsche J, Schächinger V, Seifried E, Zeiher AM, Dimmeler S. Red blood cell contamination of the final cell product impairs the efficacy of autologous bone marrow mononuclear cell therapy. J Am Coll Cardiol. 2010; 55:1385–1394.
16. Antman EM, Anbe DT, Armstrong PW, Bates ER, Green LA, Hand M, Hochman JS, Krumholz HM, Kushner FG, Lamas GA, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). J Am Coll Cardiol. 2004; 44:671–719.
17. Antman EM, Hand M, Armstrong PW, Bates ER, Green LA, Halasyamani LK, Hochman JS, Krumholz HM, Lamas GA, Mullany CJ, et al. 2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2008; 51:210–247.
18. Kushner FG, Hand M, Smith SC Jr, King SB 3rd, Anderson JL, Antman EM, Bailey SR, Bates ER, Blankenship JC, Casey DE Jr, et al. 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update) a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2009; 54:2205–2241.
19. Thygesen K, Alpert JS, White HD. Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. J Am Coll Cardiol. 2007; 50:2173–2195.
20. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, Van Train KF, Berman DS. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med. 1995; 36:2138–2147.
21. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005; 18:1440–1463.
22. Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV, Kögler G, Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002; 106:1913–1918.
23. Strauer BE, Brehm M, Zeus T, Gattermann N, Hernandez A, Sorg RV, Kögler G, Wernet P. Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenschr. 2001; 126:932–938.
24. Lu G, Haider HK, Jiang S, Ashraf M. Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced connexin-43. Circulation. 2009; 119:2587–2596.
25. Kamota T, Li TS, Morikage N, Murakami M, Ohshima M, Kubo M, Kobayashi T, Mikamo A, Ikeda Y, Matsuzaki M, et al. Ischemic pre-conditioning enhances the mobilization and recruitment of bone marrow stem cells to protect against ischemia/reperfusion injury in the late phase. J Am Coll Cardiol. 2009; 53:1814–1822.
26. Van Linthout S, Stamm Ch, Schultheiss HP, Tschöpe C. Mesenchymal stem cells and inflammatory cardiomyopathy: cardiac homing and beyond. Cardiol Res Pract. 2011; 2011:757154.
27. Tang J, Wang J, Guo L, Kong X, Yang J, Zheng F, Zhang L, Huang Y. Mesenchymal stem cells modified with stromal cell-derived factor 1 alpha improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction. Mol Cells. 2010; 29:9–19.
28. Li L, Zhang S, Zhang Y, Yu B, Xu Y, Guan Z. Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Mol Biol Rep. 2009; 36:725–731.
29. Ter Horst KW. Stem cell therapy for myocardial infarction: are we missing time? Cardiology. 2010; 117:1–10.
30. Yang YJ, Qian HY, Huang J, Geng YJ, Gao RL, Dou KF, Yang GS, Li JJ, Shen R, He ZX, et al. Atorvastatin treatment improves survival and effects of implanted mesenchymal stem cells in post-infarct swine hearts. Eur Heart J. 2008; 29:1578–1590.
31. Gersh BJ, Stone GW, White HD, Holmes DR Jr. Pharmacological facilitation of primary percutaneous coronary intervention for acute myocardial infarction: is the slope of the curve the shape of the future? JAMA. 2005; 293:979–986.
32. Hovland A, Staub UH, Bjørnstad H, Prytz J, Sexton J, Støylen A, Vik-Mo H. Gated SPECT offers improved interobserver agreement compared with echocardiography. Clin Nucl Med. 2010; 35:927–930.
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr