1. Kimura G, Van Stone JC, Bauer JH. Model prediction of plasma volume change induced by hemodialysis. J Lab Clin Med. 1984. 104:932–938.
2. Ziolko M, Pietrzyk JA, Grabska-Chrzastowska J. Accuracy of hemodialysis modeling. Kidney Int. 2000. 77:1152–1163.
3. Akcahuseyin E, Nette RW, Vincent HH, van Duyl WA, Krepel H, Weimar W, et al. Simulation study of the intercompartmental fluid shifts during hemodialysis. ASAIO J. 2000. 46:81–94.
Article
4. Ursino M, Colí L, Brighenti C, Chiari L, de Pascalis A, Avanzolini G. Prediction of solute kinetics, acid-base status, and blood volume changes during profiled hemodialysis. Ann Biomed Eng. 2000. 28:204–216.
5. Ursino M, Innocenti M. Modeling arterial hypotension during hemodialysis. Artif Organs. 1997. 21:873–890.
Article
6. deBoer RW, Karemaker JM, Strackee J. Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol. 1987. 253:H680–H689.
Article
7. Heldt T, Shim EB, Kamm RD, Mark RG. Computational modeling of cardiovascular response to orthostatic stress. J Appl Physiol. 2002. 92:1239–1254.
Article
8. Shim EB, Youn CH, Heldt T, Kamm RD, Mark RG. Computational modeling of the cardiovascular system after Fontan procedure. Lect Notes Comput Sci. 2002. 2526:105–114.
9. Shim EB, Sah JY, Youn CH. Mathematical modeling of cardiovascular system dynamics using a lumped parameter method. Jpn J Physiol. 2004. 54:545–553.
Article
10. Brouns R, De Deyn PP. Neurological complications in renal failure: a review. Clin Neurol Neurosurg. 2004. 107:1–16.
11. Ursino M, Colí L, Dalmastri V, Volpe F, La Manna G, Avanzolini G, et al. An algorithm for the rational choice of sodium profile during hemodialysis. Int J Artif Organs. 1997. 20:659–672.
Article
12. Barth RH. Jacobs C, Kjellstrand CM, Koch KM, Winchester JM, editors. Pros and cons of short, high efficiency, and high-flux dialysis. Replacement of renal function by dialysis. 1996. 4th ed. Dordrecht: Kluwer Academic Publishers;418–454.