Ann Pediatr Endocrinol Metab.  2015 Mar;20(1):8-12. 10.6065/apem.2015.20.1.8.

Pubertal growth and epiphyseal fusion

Affiliations
  • 1Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea. 64sks@khnmc.or.kr

Abstract

The complex networks of nutritional, cellular, paracrine, and endocrine factors are closely related with pubertal growth and epiphyseal fusion. Important influencing factors include chondrocyte differentiation capacity, multiple molecular pathways active in the growth plate, and growth hormone-insulin-like growth factor-I axis activation and epiphyseal fusion through estrogen and its receptors. However, the exact mechanisms of these phenomena are still unclear. A better understanding of the detailed processes involved in the pubertal growth spurt and growth plate closure in longitudinal bone growth will help us develop methods to efficiently promote pubertal growth and delay epiphyseal fusion with fewer adverse effects.

Keyword

Growth; Puberty; Growth plate

MeSH Terms

Adolescent
Axis
Bone Development
Chondrocytes
Estrogens
Growth Plate
Humans
Puberty
Estrogens

Reference

1. Lui JC, Nilsson O, Baron J. Recent research on the growth plate: Recent insights into the regulation of the growth plate. J Mol Endocrinol. 2014; 53:T1–T9. PMID: 24740736.
Article
2. Murray PG, Clayton PE. Endocrine control of growth. Am J Med Genet C Semin Med Genet. 2013; 163C:76–85. PMID: 23613426.
Article
3. Styne DM, Grumbach MM. Puberty : ontogeny, neuroendocrinology, physiology, and disorders. In : Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, editors. Williams textbook of endocrinology. 12th ed. Philadelphia: Saunders;2011. p. 1054–1202.
4. Maes C, Kronenberg HM. Postnatal bone growth: growth plate biology, bone formation, and remodeling. In : Glorieux FH, Pettifor JM, Juppner H, editors. Pediatric bone. 2nd ed. San Diego: Elsevier Co.;2012. p. 55–82.
5. Nilsson O, Marino R, De Luca F, Phillip M, Baron J. Endocrine regulation of the growth plate. Horm Res. 2005; 64:157–165. PMID: 16205094.
Article
6. van der Eerden BC, Karperien M, Wit JM. Systemic and local regulation of the growth plate. Endocr Rev. 2003; 24:782–801. PMID: 14671005.
Article
7. Emons J, Chagin AS, Sävendahl L, Karperien M, Wit JM. Mechanisms of growth plate maturation and epiphyseal fusion. Horm Res Paediatr. 2011; 75:383–391. PMID: 21540578.
Article
8. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002; 16:2813–2828. PMID: 12414734.
Article
9. Chrysis D, Nilsson O, Ritzen EM, Savendahl L. Apoptosis is developmentally regulated in rat growth plate. Endocrine. 2002; 18:271–278. PMID: 12450319.
Article
10. Emons J, Chagin AS, Hultenby K, Zhivotovsky B, Wit JM, Karperien M, et al. Epiphyseal fusion in the human growth plate does not involve classical apoptosis. Pediatr Res. 2009; 66:654–659. PMID: 19730156.
Article
11. Settembre C, Arteaga-Solis E, McKee MD, de Pablo R, Al Awqati Q, Ballabio A, et al. Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification. Genes Dev. 2008; 22:2645–2650. PMID: 18832069.
Article
12. Shapiro IM, Adams CS, Freeman T, Srinivas V. Fate of the hypertrophic chondrocyte: microenvironmental perspectives on apoptosis and survival in the epiphyseal growth plate. Birth Defects Res C Embryo Today. 2005; 75:330–339. PMID: 16425255.
Article
13. Stewart AJ, Houston B, Farquharson C. Elevated expression of hypoxia inducible factor-2alpha in terminally differentiating growth plate chondrocytes. J Cell Physiol. 2006; 206:435–440. PMID: 16155924.
Article
14. Moskalewski S, Malejczyk J. Bone formation following intrarenal transplantation of isolated murine chondrocytes: chondrocyte-bone cell transdifferentiation? Development. 1989; 107:473–480. PMID: 2612374.
Article
15. Karimian E, Chagin AS, Savendahl L. Genetic regulation of the growth plate. Front Endocrinol (Lausanne). 2012; 2:113. PMID: 22654844.
Article
16. Karp SJ, Schipani E, St-Jacques B, Hunzelman J, Kronenberg H, McMahon AP. Indi an hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development. 2000; 127:543–548. PMID: 10631175.
Article
17. van der Eerden BC, Karperien M, Gevers EF, Lowik CW, Wit JM. Expression of Indian hedgehog, parathyroid hormone-related protein, and their receptors in the postnatal growth plate of the rat: evidence for a locally acting growth restraining feedback loop after birth. J Bone Miner Res. 2000; 15:1045–1055. PMID: 10841173.
Article
18. Kindblom JM, Nilsson O, Hurme T, Ohlsson C, Savendahl L. Expression and localization of Indian hedgehog (Ihh) and parathyroid hormone related protein (PTHrP) in the human growth plate during pubertal development. J Endocrinol. 2002; 174:R1–R6. PMID: 12176676.
Article
19. Hirai T, Chagin AS, Kobayashi T, Mackem S, Kronenberg HM. Parathyroid hormone/parathyroid hormone-related protein receptor signaling is required for maintenance of the growth plate in postnatal life. Proc Natl Acad Sci U S A. 2011; 108:191–196. PMID: 21173257.
Article
20. Nilsson O, Parker EA, Hegde A, Chau M, Barnes KM, Baron J. Gradients in bone morphogenetic protein-related gene expression across the growth plate. J Endocrinol. 2007; 193:75–84. PMID: 17400805.
Article
21. Pizette S, Niswander L. BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev Biol. 2000; 219:237–249. PMID: 10694419.
Article
22. Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development. 2001; 128:4523–4534. PMID: 11714677.
Article
23. Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell. 2002; 3:439–449. PMID: 12361605.
Article
24. Lazarus JE, Hegde A, Andrade AC, Nilsson O, Baron J. Fibroblast growth factor expression in the postnatal growth plate. Bone. 2007; 40:577–586. PMID: 17169623.
Article
25. Cramer T, Schipani E, Johnson RS, Swoboda B, Pfander D. Expression of VEGF isoforms by epiphyseal chondrocytes during low-oxygen tension is HIF-1 alpha dependent. Osteoarthritis Cartilage. 2004; 12:433–439. PMID: 15135139.
Article
26. Lin C, McGough R, Aswad B, Block JA, Terek R. Hypoxia induces HIF-1alpha and VEGF expression in chondrosarcoma cells and chondrocytes. J Orthop Res. 2004; 22:1175–1181. PMID: 15475194.
Article
27. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004; 25:581–611. PMID: 15294883.
Article
28. Noble BS. The osteocyte lineage. Arch Biochem Biophys. 2008; 473:106–111. PMID: 18424256.
Article
29. Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008; 29:535–559. PMID: 18436706.
Article
30. Albin AK, Niklasson A, Westgren U, Norjavaara E. Estradiol and pubertal growth in girls. Horm Res Paediatr. 2012; 78:218–225. PMID: 23075676.
Article
31. Leung KC, Johannsson G, Leong GM, Ho KK. Estrogen regulation of growth hormone action. Endocr Rev. 2004; 25:693–721. PMID: 15466938.
Article
32. Chagin AS, Sävendahl L. Oestrogen receptors and linear bone growth. Acta Paediatr. 2007; 96:1275–1279. PMID: 17718780.
Article
33. Borjesson AE, Lagerquist MK, Windahl SH, Ohlsson C. The role of estrogen receptor α in the regulation of bone and growth plate cartilage. Cell Mol Life Sci. 2013; 70:4023–4037. PMID: 23516016.
Article
34. Weise M, De-Levi S, Barnes KM, Gafni RI, Abad V, Baron J. Effects of estrogen on growth plate senescence and epiphyseal fusion. Proc Natl Acad Sci U S A. 2001; 98:6871–6876. PMID: 11381135.
Article
35. Borjesson AE, Windahl SH, Karimian E, Eriksson EE, Lagerquist MK, Engdahl C, et al. The role of estrogen receptor-α and its activation function-1 for growth plate closure in female mice. Am J Physiol Endocrinol Metab. 2012; 302:E1381–E1389. PMID: 22414805.
36. Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, et al. Sex steroid actions in male bone. Endocr Rev. 2014; 35:906–960. PMID: 25202834.
Article
37. Borjesson AE, Lagerquist MK, Liu C, Shao R, Windahl SH, Karlsson C, et al. The role of estrogen receptor α in growth plate cartilage for longitudinal bone growth. J Bone Miner Res. 2010; 25:2690–2700. PMID: 20564247.
Article
38. Nilsson O, Chrysis D, Pajulo O, Boman A, Holst M, Rubinstein J, et al. Localization of estrogen receptors-alpha and -beta and androgen receptor in the human growth plate at different pubertal stages. J Endocrinol. 2003; 177:319–326. PMID: 12740020.
Article
Full Text Links
  • APEM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr