1. Osteoporosis prevention, diagnosis, and therapy. NIH Consensus Statement. 2007. 17:1–45.
2. Jouanny P, Guillemin F, Kuntz C, Jeandel C, Pourel J. Environmental and genetic factors affecting bone mass. Similarity of bone density among members of healthy families. Arthritis Rheum. 1995. 38:61–67.
Article
3. Liu YZ, Liu YJ, Recker RR, Deng HW. Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol. 2003. 177:147–196.
Article
4. Gong G, Haynatzki G. Association between bone mineral density and candidate genes in different ethnic populations and its implications. Calcif Tissue Int. 2003. 72:113–123.
Article
5. Kim JG, Lim KS, Kim EK, Choi YM, Lee JY. Association of vitamin D receptor and estrogen receptor gene polymorphisms with bone mass in postmenopausal Korean women. Menopause. 2001. 8:222–228.
Article
6. Kim JG, Roh KR, Lee JY. The relationship among serum insulin-like growth factor-I, insulin-like growth factor-I gene polymorphism and bone mineral density in postmenopausal women in Korea. Am J Obstet Gynecol. 2002. 186:345–350.
Article
7. Kim JG, Kwon JH, Kim SH, Choi YM, Moon SY, Lee JY. Association between vitamin D receptor gene haplotypes and bone mass in postmenopausal Korean women. Am J Obstet Gynecol. 2003. 189:1234–1240.
Article
8. Kim JG, Kim JH, Kim JY, Ku SY, Jee BC, Suh CS, Kim SH, Choi YM. Association between the osteoprotegrin (OPG), receptor activator of NF-kB (RANK), and RANK ligand (RANKL) gene polymorphisms, and circulating OPG, soluble RANKL levels, and bone mineral density in Korean postmenopausal women. Menopause. 2007. 14:913–918.
9. Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene. 2004. 341:19–39.
Article
10. Baron R, Rawadi G. Targeting the Wnt/β-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology. 2007. 148:2635–2643.
Article
11. Johnson ML, Kamel MA. The Wnt signaling pathway and bone metabolism. Curr Opin Rheumatol. 2007. 19:376–382.
Article
12. Bodine PV, Komm BS. Wnt signaling and osteoblasotogenesis. Rev Endocr Metab Disord. 2006. 7:33–39.
13. Ferrari SL, Deutsch S, Antonarakis SE. Pathogenic mutations and polymorphisms in the lipoprotein receptor-related protein 5 reveal a new biological pathway for the control of bone mass. Curr Opin Lipidol. 2005. 16:207–214.
Article
14. Balemans W, Van Hul W. The genetics of low-density lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology. 2007. 148:2622–2629.
Article
15. Kim JY, Jee BC, Suh CS, Kim SH, Choi YM, Moon SY, Kim JG. Relationship between low density lipoprotein related receptor protein 5 gene polymorphism, and bone mineral density in postmenopausal Korean women. J Korean Soc Menopause. 2007. 13:21–32.
16. Hausler KD, Horwood NJ, Chuman Y, Fisher JL, Ellis J, Martin TJ, Rubin JS, Gillespie MT. Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res. 2004. 19:1873–1881.
Article
17. Wang FS, Ko JY, Lin CL, Wu HL, Ke HJ, Tai PJ. Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss. A histomorphological study in ovariectomized rats. Bone. 2007. 40:485–492.
Article
18. Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994. 9:1137–1141.
Article
19. Tokuhara M, Hirai M, Atomi Y, Terada M, Katoh M. Molecular cloning of human frizzled-6. Biochem Biophys Res Comm. 1998. 243:622–627.
20. Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA 2nd, Hartmann C, Li L, Hwang TH, Brayton CF, Lang RA, Karsenty G, Chan L. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002. 157:303–314.
Article
21. Golan T, Yaniv A, Bafico A, Liu G, Gazit A. The human frizzled 6 (HFZ6) acts as a negative regulator of the canonical Wnt-b-catenin signaling cascade. J Biol Chem. 2004. 279:14879–14888.