J Korean Med Sci.  2011 May;26(5):631-636. 10.3346/jkms.2011.26.5.631.

Apolipoprotein B is Highly Associated with the Risk of Coronary Heart Disease as Estimated by the Framingham Risk Score in Healthy Korean Men

Affiliations
  • 1Department of Occupational Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea. ksg6201@empal.com
  • 2Department of Preventive Medicine, Ewha Womans University, Seoul, Korea.
  • 3Department of Family Medicine, Chung-Ang University, School of Medicine, Seoul, Korea.

Abstract

The aim of this study was to examine the association between serum apolipoprotein B (apoB) and the risk of coronary heart disease (CHD) using Framingham risk score (FRS) in healthy Korean men. A total of 13,523 men without medication history of diabetes and hypertension were enrolled in this study. The FRS is based on six coronary risk factors. FRS > or = 10% was defined as more-than-a-moderate risk group and FRS > or = 20% as high risk group, respectively. The logistic regression analyses were conducted. When quartile 1 (Q1) set as a reference, in unadjusted analyses, the Q2, Q3, Q4 of apoB level had increased odds ratio (OR) for the risk of CHD in both more-than-a-moderate risk and high risk group, respectively. After adjusting for confounding variables, multivariable-adjusted logistic regression analyses showed a strong relationship between the quartiles of apoB level and more-than-a-moderate risk and high risk group, respectively. These associations were attenuated, but still remained statistically significant. ApoB is found to be independently related to the risk of CHD using FRS in healthy Korean men, and the link between apoB and the risk of CHD is dose-depedent.

Keyword

Framingham Risk Score; Apolipoproteins B; Coronary Disease

MeSH Terms

Adult
Apolipoproteins B/*blood
Coronary Disease/*blood/*diagnosis
Humans
Male
Men's Health
Middle Aged
Odds Ratio
Republic of Korea
Risk Assessment
Risk Factors

Reference

1. Olofsson SO, Wiklund O, Borén J. Apolipoproteins A-I and B: biosynthesis, role in the development of atherosclerosis and targets for intervention against cardiovascular disease. Vasc Health Risk Manag. 2007. 3:491–502.
2. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998. 97:1837–1847.
3. Kim DS, Kang SK. Work-related cerebro-cardiovascular diseases in Korea. J Korean Med Sci. 2010. 25:Suppl. S105–S111.
4. Poirier P. Healthy lifestyle: even if you are doing everything right, extra weight carries an excess risk of acute coronary events. Circulation. 2008. 117:3057–3059.
5. Wood D, De Backer G, Faergeman O, Graham I, Mancia G, Pyörälä K. Prevention of coronary heart disease in clinical practice: recommendations of the Second Joint Task Force of European and other Societies on Coronary Prevention. Atherosclerosis. 1998. 140:199–270.
6. Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP. An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol. 1979. 110:281–290.
7. National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002. 106:3143–3421.
8. Otsuka T, Kawada T, Katsumata M, Ibuki C, Kusama Y. High-sensitivity C-reactive protein is associated with the risk of coronary heart disease as estimated by the Framingham Risk Score in middle-aged Japanese men. Int J Cardiol. 2008. 129:245–250.
9. Jeong JC, Ro H, Hwang YH, Lee HK, Ha J, Ahn C, Yang J. Cardiovascular diseases after kidney transplantation in Korea. J Korean Med Sci. 2010. 25:1589–1594.
10. Wannamethee SG, Lennon L, Shaper AG. The value of gamma-glutamyltransferase in cardiovascular risk prediction in men without diagnosed cardiovascular disease or diabetes. Atherosclerosis. 2008. 201:168–175.
11. WHO Western Pacific Region. IASO. IOTF. The Asia-Pacific perspective: redefining obesity and its treatment. 2000. Sydney: Health Communications Australia Pty.
12. Anderson KM, Wilson PW, Odell PM, Kannel WB. An updated coronary risk profile. A statement for health professionals. Circulation. 1991. 83:356–362.
13. Lamarche B, Moorjani S, Lupien PJ, Cantin B, Bernard PM, Dagenais GR, Després JP. Apolipoprotein A-I and B levels and the risk of ischemic heart disease during a five-year follow-up of men in the Québec cardiovascular study. Circulation. 1996. 94:273–278.
14. Pischon T, Girman CJ, Sacks FM, Rifai N, Stampfer MJ, Rimm EB. Non-high-density lipoprotein cholesterol and apolipoprotein b in the prediction of coronary heart disease in men. Circulation. 2005. 112:3375–3383.
15. Ridker PM, Rifai N, Cook NR, Bradwin G, Buring JE. Non-HDL cholesterol, apolipoproteins A-I and b100, standard lipid measures, lipid ratios, and CRP as risk factors for cardiovascular disease in Women. JAMA. 2005. 294:326–333.
16. Shai I, Rimm EB, Hankinson SE, Curhan G, Manson JE, Rifai N, Stampfer MJ, Ma J. Multivariate assessment of lipid parameters as predictors of coronary heart disease among postmenopausal women: potential implications for clinical guidelines. Circulation. 2004. 110:2824–2830.
17. Sharrett AR, Ballantyne CM, Coady SA, Heiss G, Sorlie PD, Catellier D, Patsch W. Atherosclerosis Risk in Communities Study Group. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2001. 104:1108–1113.
18. Walldius G, Jungner I, Holme I, Aastveit AH, Kolar W, Steiner E. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet. 2001. 358:2026–2033.
19. Sniderman AD, Scantlebury T, Cianflone K. Hypertriglyceridemic hyperapob: the unappreciated atherogenic dyslipoproteinemia in type 2 diabetes mellitus. Ann Intern Med. 2001. 135:447–459.
20. Walldius G, Jungner I. Apolipoprotein B and apolipoprotein A-I: risk indicators of coronary heart disease and targets for lipid-modifying therapy. J Intern Med. 2004. 255:188–205.
21. Lamarche B, Tchernof A, Moorjani S, Cantin B, Dagenais GR, Lupien PJ, Després JP. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Québec Cardiovascular Study. Circulation. 1997. 95:69–75.
22. St-Pierre AC, Ruel IL, Cantin B, Dagenais GR, Bernard PM, Després JP, Lamarche B. Comparison of various electrophoretic characteristics of LDL particles and their relationship to the risk of ischemic heart disease. Circulation. 2001. 104:2295–2299.
23. Lemieux I, Lamarche B, Couillard C, Pascot A, Cantin B, Bergeron J, Dagenais GR, Després JP. Total cholesterol/HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: the Quebec Cardiovascular Study. Arch Intern Med. 2001. 161:2685–2692.
24. Marcovina SM, Albers JJ, Kennedy H, Mei JV, Henderson LO, Hannon WH. International Federation of Clinical Chemistry standardization project for measurements of apolipoproteins A-I and B. IV. Comparability of apolipoprotein B values by use of International Reference Material. Clin Chem. 1994. 40:586–592.
25. Miremadi S, Sniderman A, Frohlich J. Can measurement of serum apolipoprotein B replace the lipid profile monitoring of patients with lipoprotein disorders? Clin Chem. 2002. 48:484–488.
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr