Clin Exp Otorhinolaryngol.  2012 Dec;5(4):181-187. 10.3342/ceo.2012.5.4.181.

Impacts of Fluid Dynamics Simulation in Study of Nasal Airflow Physiology and Pathophysiology in Realistic Human Three-Dimensional Nose Models

Affiliations
  • 1Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. entwdy@nus.edu.sg
  • 2Department of Engineering, Faculty of Engineering, National University of Singapore, Singapore.
  • 3Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston and Division of Otolaryngology, Cape Cod Hospital, Hyannis, MA, USA.

Abstract

During the past decades, numerous computational fluid dynamics (CFD) studies, constructed from CT or MRI images, have simulated human nasal models. As compared to rhinomanometry and acoustic rhinometry, which provide quantitative information only of nasal airflow, resistance, and cross sectional areas, CFD enables additional measurements of airflow passing through the nasal cavity that help visualize the physiologic impact of alterations in intranasal structures. Therefore, it becomes possible to quantitatively measure, and visually appreciate, the airflow pattern (laminar or turbulent), velocity, pressure, wall shear stress, particle deposition, and temperature changes at different flow rates, in different parts of the nasal cavity. The effects of both existing anatomical factors, as well as post-operative changes, can be assessed. With recent improvements in CFD technology and computing power, there is a promising future for CFD to become a useful tool in planning, predicting, and evaluating outcomes of nasal surgery. This review discusses the possibilities and potential impacts, as well as technical limitations, of using CFD simulation to better understand nasal airflow physiology.

Keyword

Computational fluid dynamics; Nose models; Nasal airflow dynamics; Airflow physiology and pathophysiology

MeSH Terms

Humans
Hydrodynamics
Nasal Cavity
Nasal Surgical Procedures
Nose
Rhinomanometry
Rhinometry, Acoustic

Figure

  • Fig. 1 Three-dimensional (3D) human nasal model can be constructed from a set of clinical imaging data, and used for computational fluid dynamics modeling calculations.

  • Fig. 2 Turbulent kinetic energy (m2/second2) airflow contours for a healthy nose with different flow rates. There is an obvious effect of airflow turbulence in maximizing air contact with the turbinate mucosa (small arrows).

  • Fig. 3 Three-dimensional (3D) model of inspiratory air streamlines (blue), with air velocity, pressure and wall shear stress measurements, at three points in both normal (healthy) and obstructed nose models. The flow rate used in computational fluid dynamics simulation is 34.8 L/minute.


Reference

1. Keyhani K, Scherer PW, Mozell MM. Numerical simulation of airflow in the human nasal cavity. J Biomech Eng. 1995; 11. 117(4):429–441. PMID: 8748525.
Article
2. Castro Ruiz P, Castro Ruiz F, Costas Lopez A, Cenjor Espanol C. Computational fluid dynamics simulations of the airflow in the human nasal cavity. Acta Otorrinolaringol Esp. 2005; 11. 56(9):403–410. PMID: 16353786.
3. Martonen TB, Quan L, Zhang Z, Musante CJ. Flow simulation in the human upper respiratory tract. Cell Biochem Biophys. 2002; 37(1):27–36. PMID: 12398415.
Article
4. Weinhold I, Mlynski G. Numerical simulation of airflow in the human nose. Eur Arch Otorhinolaryngol. 2004; 9. 261(8):452–455. PMID: 14652769.
Article
5. Horschler I, Schroder W, Meinke M. On the assumption of steadiness of nasal cavity flow. J Biomech. 2010; 4. 43(6):1081–1085. PMID: 20080240.
6. Leong SC, Chen XB, Lee HP, Wang DY. A review of the implications of computational fluid dynamic studies on nasal airflow and physiology. Rhinology. 2010; 6. 48(2):139–145. PMID: 20502749.
Article
7. Pless D, Keck T, Wiesmiller K, Rettinger G, Aschoff AJ, Fleiter TR, et al. Numerical simulation of air temperature and airflow patterns in the human nose during expiration. Clin Otolaryngol Allied Sci. 2004; 12. 29(6):642–647. PMID: 15533152.
Article
8. Chen XB, Lee HP, Chong VF, Wang de Y. Numerical simulation of the effects of inferior turbinate surgery on nasal airway heating capacity. Am J Rhinol Allergy. 2010; Sep-Oct. 24(5):e118–e122. PMID: 21244728.
Article
9. Keyhani K, Scherer PW, Mozell MM. A numerical model of nasal odorant transport for the analysis of human olfaction. J Theor Biol. 1997; 6. 186(3):279–301. PMID: 9219668.
Article
10. Zhao K, Scherer PW, Hajiloo SA, Dalton P. Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem Senses. 2004; 6. 29(5):365–379. PMID: 15201204.
Article
11. Zhao K, Pribitkin EA, Cowart BJ, Rosen D, Scherer PW, Dalton P. Numerical modeling of nasal obstruction and endoscopic surgical intervention: outcome to airflow and olfaction. Am J Rhinol. 2006; May-Jun. 20(3):308–316. PMID: 16871935.
Article
12. Kimbell JS, Subramaniam RP. Use of computational fluid dynamics models for dosimetry of inhaled gases in the nasal passages. Inhal Toxicol. 2001; 5. 13(5):325–334. PMID: 11295865.
Article
13. Chen XB, Lee HP, Chong VF, Wang DY. Assessment of septal deviation effects on nasal air flow: a computational fluid dynamics model. Laryngoscope. 2009; 9. 119(9):1730–1736. PMID: 19572266.
Article
14. Grant O, Bailie N, Watterson J, Cole J, Gallagher G, Hanna B. Numerical model of a nasal septal perforation. Stud Health Technol Inform. 2004; 107(Pt 2):1352–1356. PMID: 15361035.
15. Pless D, Keck T, Wiesmiller KM, Lamche R, Aschoff AJ, Lindemann J. Numerical simulation of airflow patterns and air temperature distribution during inspiration in a nose model with septal perforation. Am J Rhinol. 2004; Nov-Dec. 18(6):357–362. PMID: 15706981.
Article
16. Lee HP, Garlapati RR, Chong VF, Wang DY. Effects of septal perforation on nasal airflow: computer simulation study. J Laryngol Otol. 2010; 1. 124(1):48–54. PMID: 19775487.
Article
17. Chen XB, Lee HP, Chong VF, Wang DY. Assessments of nasal bone fracture effects on nasal airflow: a computational fluid dynamics study. Am J Rhinol Allergy. 2011; Jan-Feb. 25(1):e39–e43. PMID: 21711975.
Article
18. Lee HP, Poh HJ, Chong FH, Wang de Y. Changes of airflow pattern in inferior turbinate hypertrophy: a computational fluid dynamics model. Am J Rhinol Allergy. 2009; Mar-Apr. 23(2):153–158. PMID: 19401040.
Article
19. Chen XB, Lee HP, Chong VF, Wang DY. Impact of inferior turbinate hypertrophy on the aerodynamic pattern and physiological functions of the turbulent airflow: a CFD simulation model. Rhinology. 2010; 6. 48(2):163–168. PMID: 20502754.
Article
20. Wexler D, Segal R, Kimbell J. Aerodynamic effects of inferior turbinate reduction: computational fluid dynamics simulation. Arch Otolaryngol Head Neck Surg. 2005; 12. 131(12):1102–1107. PMID: 16365225.
21. Chen XB, Leong SC, Lee HP, Chong VF, Wang DY. Aerodynamic effects of inferior turbinate surgery on nasal airflow: a computational fluid dynamics model. Rhinology. 2010; 12. 48(4):394–400. PMID: 21442074.
22. Lee HP, Garlapati RR, Chong VF, Wang DY. Comparison between effects of various partial inferior turbinectomy options on nasal airflow: a computer simulation study. Comput Methods Biomech Biomed Engin. 2011; 9. 14. [Epub]. http://dx.doi.org/10.1080/10255842.2011.609481.
Article
23. Lindemann J, Brambs HJ, Keck T, Wiesmiller KM, Rettinger G, Pless D. Numerical simulation of intranasal airflow after radical sinus surgery. Am J Otolaryngol. 2005; May-Jun. 26(3):175–180. PMID: 15858773.
Article
24. Chen XB, Lee HP, Chong VF, Wang DY. Aerodynamic characteristics inside the rhino-sinonasal cavity after functional endoscopic sinus surgery. Am J Rhinol Allergy. 2011; Nov-Dec. 25(6):388–392. PMID: 22185741.
Article
25. Garlapati RR, Lee HP, Chong FH, Wang DY. Indicators for the correct usage of intranasal medications: a computational fluid dynamics study. Laryngoscope. 2009; 10. 119(10):1975–1982. PMID: 19655385.
Article
26. Chen XB, Lee HP, Chong VF, Wang DY. A computational fluid dynamics model for drug delivery in a nasal cavity with inferior turbinate hypertrophy. J Aerosol Med Pulm Drug Deliv. 2010; 10. 23(5):329–338. PMID: 20804427.
Article
27. Chen XB, Lee HP, Chong VF, Wang DY. Drug delivery in the nasal cavity after functional endoscopic sinus surgery: a computational fluid dynamics study. J Laryngol Otol. 2012; 5. 126(5):487–494. PMID: 22414292.
Article
28. Hooper RG. Forced inspiratory nasal flow-volume curves: a simple test of nasal airflow. Mayo Clin Proc. 2001; 10. 76(10):990–994. PMID: 11605701.
Article
29. Lin CL, Tawhai MH, McLennan G, Hoffman EA. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol. 2007; 8. 157(2-3):295–309. PMID: 17360247.
30. Suh MW, Jin HR, Kim JH. Computed tomography versus nasal endoscopy for the measurement of the internal nasal valve angle in Asians. Acta Otolaryngol. 2008; 6. 128(6):675–679. PMID: 18568504.
Article
31. Terheyden H, Maune S, Mertens J, Hilberg O. Acoustic rhinometry: validation by three-dimensionally reconstructed computer tomographic scans. J Appl Physiol. 2000; 9. 89(3):1013–1021. PMID: 10956345.
Article
32. Cole P. Acoustic rhinometry and rhinomanometry. Rhinol Suppl. 2000; 12. 16:29–34. PMID: 11225286.
33. Eccles R. Nasal airflow in health and disease. Acta Otolaryngol. 2000; 8. 120(5):580–595. PMID: 11039867.
Article
34. Cole P. The four components of the nasal valve. Am J Rhinol. 2003; Mar-Apr. 17(2):107–110. PMID: 12751706.
Article
35. Farmer SE, Eccles R. Chronic inferior turbinate enlargement and the implications for surgical intervention. Rhinology. 2006; 12. 44(4):234–238. PMID: 17216738.
36. Wang DY, Raza MT, Goh DY, Lee BW, Chan YH. Acoustic rhinometry in nasal allergen challenge study: which dimensional measures are meaningful? Clin Exp Allergy. 2004; 7. 34(7):1093–1098. PMID: 15248855.
Article
37. Garcia GJ, Bailie N, Martins DA, Kimbell JS. Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. J Appl Physiol. 2007; 9. 103(3):1082–1092. PMID: 17569762.
Article
38. Wen J, Inthavong K, Tu J, Wang S. Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respir Physiol Neurobiol. 2008; 4. 161(2):125–135. PMID: 18378196.
Article
39. Lee JH, Na Y, Kim SK, Chung SK. Unsteady flow characteristics through a human nasal airway. Respir Physiol Neurobiol. 2010; 7. 172(3):136–146. PMID: 20471501.
Article
40. Cole P. Physiology of the nose and paranasal sinuses. Clin Rev Allergy Immunol. 1998; Spring-Summer. 16(1-2):25–54. PMID: 9561336.
Article
41. Hood CM, Schroter RC, Doorly DJ, Blenke EJ, Tolley NS. Computational modeling of flow and gas exchange in models of the human maxillary sinus. J Appl Physiol. 2009; 10. 107(4):1195–1203. PMID: 19608923.
Article
42. Naraghi M, Deroee AF, Ebrahimkhani M, Kiani S, Dehpour A. Nitric oxide: a new concept in chronic sinusitis pathogenesis. Am J Otolaryngol. 2007; Sep-Oct. 28(5):334–337. PMID: 17826536.
Article
43. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993; 12. 329(27):2002–2012. PMID: 7504210.
Article
44. Xiong G, Zhan J, Zuo K, Li J, Rong L, Xu G. Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity. Med Biol Eng Comput. 2008; 11. 46(11):1161–1167. PMID: 18726628.
Article
45. Bhattacharyya N, Gopal HV, Lee KH. Bacterial infection after endoscopic sinus surgery: a controlled prospective study. Laryngoscope. 2004; 4. 114(4):765–767. PMID: 15064638.
Article
46. Nayak DR, Balakrishnan R. De novo bacterial reinfections after endoscopic sinus surgery: can uncinate process preservation surgeries prevent it? Laryngoscope. 2005; 5. 115(5):928. PMID: 15867671.
Article
47. Bousquet J, Van Cauwenberge P, Khaltaev N. ARIA Workshop Group. World Health Organization. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol. 2001; 11. 108(5 Suppl):S147–S334. PMID: 11707753.
Article
48. Fokkens W, Lund V, Mullol J. European Position Paper on Rhinosinusitis and Nasal Polyps Group. European position paper on rhinosinusitis and nasal polyps 2007. Rhinol Suppl. 2007; (20):1–136. PMID: 17844873.
49. Senocak D, Senocak M, Bozan S. Sinonasal distribution of topically applied particles: computerized tomographic detection and the effects of topical decongestion. Otolaryngol Head Neck Surg. 2005; 12. 133(6):944–948. PMID: 16360518.
Article
50. Homer JJ, Maughan J, Burniston M. A quantitative analysis of the intranasal delivery of topical nasal drugs to the middle meatus: spray versus drop administration. J Laryngol Otol. 2002; 1. 116(1):10–13. PMID: 11860644.
Article
51. Wenzel A, Henriksen J, Melsen B. Nasal respiratory resistance and head posture: effect of intranasal corticosteroid (Budesonide) in children with asthma and perennial rhinitis. Am J Orthod. 1983; 11. 84(5):422–426. PMID: 6579843.
Article
52. Zhu JH, Lee HP, Lim KM, Lee SJ, Wang DY. Evaluation and comparison of nasal airway flow patterns among three subjects from Caucasian, Chinese and Indian ethnic groups using computational fluid dynamics simulation. Respir Physiol Neurobiol. 2011; 1. 175(1):62–69. PMID: 20854936.
Article
53. Rhee JS, Pawar SS, Garcia GJ, Kimbell JS. Toward personalized nasal surgery using computational fluid dynamics. Arch Facial Plast Surg. 2011; Sep-Oct. 13(5):305–310. PMID: 21502467.
Article
54. Pawar SS, Garcia GJ, Kimbell JS, Rhee JS. Objective measures in aesthetic and functional nasal surgery: perspectives on nasal form and function. Facial Plast Surg. 2010; 8. 26(4):320–327. PMID: 20665410.
Article
Full Text Links
  • CEO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr