1. Ray WA, Murray KT, Hall K, Arbogast PG, Stein CM. Azithromycin and the risk of cardiovascular death. N Engl J Med. 2012. 366:1881–1890.
Article
2. Yoon D, Chang BC, Kang SW, Bae H, Park RW. Adoption of electronic health records in Korean tertiary teaching and general hospitals. Int J Med Inform. 2012. 81:196–203.
Article
3. Park RW, Shin SS, Choi YI, Ahn JO, Hwang SC. Computerized physician order entry and electronic medical record systems in Korean teaching and general hospitals: results of a 2004 survey. J Am Med Inform Assoc. 2005. 12:642–647.
Article
4. Yoon D, Park MY, Choi NK, Park BJ, Kim JH, Park RW. Detection of adverse drug reaction signals using an electronic health records database: Comparison of the Laboratory Extreme Abnormality Ratio (CLEAR) algorithm. Clin Pharmacol Ther. 2012. 91:467–474.
Article
5. Jha AK, DesRoches CM, Campbell EG, Donelan K, Rao SR, Ferris TG, Shields A, Rosenbaum S, Blumenthal D. Use of electronic health records in U.S. hospitals. N Engl J Med. 2009. 360:1628–1638.
Article
6. Hubner U, Ammenwerth E, Flemming D, Schaubmayr C, Sellemann B. IT adoption of clinical information systems in Austrian and German hospitals: results of a comparative survey with a focus on nursing. BMC Med Inform Decis Mak. 2010. 10:8.
Article
7. Yasunaga H, Imamura T, Yamaki S, Endo H. Computerizing medical records in Japan. Int J Med Inform. 2008. 77:708–713.
Article
8. Park MY, Yoon D, Lee K, Kang SY, Park I, Lee SH, Kim W, Kam HJ, Lee YH, Kim JH, Park RW. A novel algorithm for detection of adverse drug reaction signals using a hospital electronic medical record database. Pharmacoepidemiol Drug Saf. 2011. 20:598–607.
Article
9. Sheen SS, Choi JE, Park RW, Kim EY, Lee YH, Kang UG. Overdose rate of drugs requiring renal dose adjustment: data analysis of 4 years prescriptions at a tertiary teaching hospital. J Gen Intern Med. 2008. 23:423–428.
Article
10. Lee SM, Park RW. Basic concepts and principles of data mining in clinical practice. J Korean Soc Med Inform. 2009. 15:175–189.
Article
11. Han J, Kamber M. Han J, Kamber M, editors. Data warehouse and OLAP technology for data mining. Data mining: concepts and techniques. 2001. San Francisco: Morgan Kaufmann Publishers;39–43.
12. Prather JC, Lobach DF, Goodwin LK, Hales JW, Hage ML, Hammond WE. Medical data mining: knowledge discovery in a clinical data warehouse. Proc AMIA Annu Fall Symp. 1997. 101–105.
13. Friedman C, Hripcsak G, Shagina L, Liu H. Representing information in patient reports using natural language processing and the extensible markup language. J Am Med Inform Assoc. 1999. 6:76–87.
Article
14. Meystre SM, Haug PJ. Randomized controlled trial of an automated problem list with improved sensitivity. Int J Med Inform. 2008. 77:602–612.
Article
15. Xu H, Stenner SP, Doan S, Johnson KB, Waitman LR, Denny JC. MedEx: a medication information extraction system for clinical narratives. J Am Med Inform Assoc. 2010. 17:19–24.
Article
16. Haerian K, Varn D, Vaidya S, Ena L, Chase HS, Friedman C. Detection of pharmacovigilance-related adverse events using electronic health records and automated methods. Clin Pharmacol Ther. 2012. 92:228–234.
Article
17. Hripcsak G, Friedman C, Alderson PO, DuMouchel W, Johnson SB, Clayton PD. Unlocking clinical data from narrative reports: a study of natural language processing. Ann Intern Med. 1995. 122:681–688.
Article
18. Park MY, Yoon D, Choi NK, Lee J, Lee K, Lim HS, Park BJ, Kim JH, Park RW. Construction of an open-access QT database for detecting the proarrhythmia potential of marketed drugs: ECG-ViEW. Clin Pharmacol Ther. 2012. 07. 25. [Epub]. DOI:
10.1038/clpt.2012.93.
Article
19. Murphy SN, Mendis ME, Berkowitz DA, Kohane I, Chueh HC. Integration of clinical and genetic data in the i2b2 architecture. AMIA Annu Symp Proc. 2006. 1040.
20. Platt R, Carnahan RM, Brown JS, Chrischilles E, Curtis LH, Hennessy S, Nelson JC, Racoosin JA, Robb M, Schneeweiss S, Toh S, Weiner MG. The U.S. Food and Drug Administration.s Mini-Sentinel program: status and direction. Pharmacoepidemiol Drug Saf. 2012. 21:Suppl 1. 1–8.
Article
21. Trifiro G, Fourrier-Reglat A, Sturkenboom MC, Diaz Acedo C, Van Der Lei J. EU-ADR Group. The EU-ADR project: preliminary results and perspective. Stud Health Technol Inform. 2009. 148:43–49.
22. Cios KJ, Moore GW. Uniqueness of medical data mining. Artif Intell Med. 2002. 26:1–24.
Article
24. El Emam K, Arbuckle L, Koru G, Eze B, Gaudette L, Neri E, Rose S, Howard J, Gluck J. De-identification methods for open health data: the case of the Heritage Health Prize claims dataset. J Med Internet Res. 2012. 14:e33.
Article
25. Service RF. Gene sequencing. The race for the $1000 genome. Science. 2006. 311:1544–1546.
26. Dondorp WJ, de Wert GM. The 'thousand-dollar genome': an ethical exploration. 2010. The Hague: Centre for Ethics and Health.