Korean J Lab Med.  2011 Apr;31(2):86-90. 10.3343/kjlm.2011.31.2.86.

A Rare Case of Microgranular Acute Promyelocytic Leukemia Associated with ider(17)(q10)t(15;17) in an Old-age Patient

Affiliations
  • 1Department of Laboratory Medicine, School of Medicine, Kyung Hee University, Seoul, Korea. 153jesus@hanmail.net
  • 2Department of Pediatrics, School of Medicine, Kyung Hee University, Seoul, Korea.
  • 3Department of Pathology, School of Medicine, Kyung Hee University, Seoul, Korea.
  • 4Department of Hematology-Oncology, School of Medicine, Kyung Hee University, Seoul, Korea. ksamcho@khmc.or.kr

Abstract

We present a rare case of microgranular variant acute promyelocytic leukemia (APL) associated with ider(17)(q10)t(15;17)(q22;q12) of an old-age patient. The initial chromosome study showed a 46,XX,del(6)(?q21q25),der(15)t(15;17)(q22;q12),ider(17)(q10)t(15;17)[10]/47,sl,+ider(17)(q10)t(15;17)[3]/46,XX[16]. FISH signals from a dual color dual fusion translocation PML-RARA probe were consistent with the results of conventional cytogenetics. Because of the rarity of ider(17)(q10)t(15;17) in microgranular APL, further studies on both gene dosage effect of this chromosomal abnormality and the influence of ider(17)(q10)t(15;17) on clinical features such as prognosis, survival, and treatment response of APL cases are recommended.

Keyword

ider(17)(q10)t(15;17); Old-age; Microgranular; Acute promyelocytic leukemia

MeSH Terms

Bone Marrow Cells/pathology
*Chromosomes, Human, Pair 15
*Chromosomes, Human, Pair 17
Female
Humans
In Situ Hybridization, Fluorescence
Karyotyping
Leukemia, Promyelocytic, Acute/*diagnosis/genetics/pathology
Middle Aged
Oncogene Proteins, Fusion/genetics
*Translocation, Genetic

Figure

  • Fig. 1 Bone marrow aspiration showing abnormal promyelocytes with sparse and/or fine granulation (dotted arrows), bilobed or "butterfly"-shaped nucleus (a horizontal arrow), cerebriform nucleus (an oblique arrow) and "salmon pink"-colored cytoplasm (a vertical arrow) at diagnosis (Wright-Giemsa stain,×1,000).

  • Fig. 2 Chromosome and FISH studies at initial diagnosis. (A) Full karyogram of the bone marrow cells (major clone) at diagnosis: 46,XX,del(6)(?q21q25),der(15)t(15;17)(q22;q12),ider(17)(q10)t(15;17). The arrows indicate abnormal chromosomes in this karyogram. (B) Partial karyograms (chromosomes 15 and 17) of the bone marrow cells at diagnosis: Upper image: t(15;17)(q22;q12) associated with ider(17)(q10)t(15;17). Lower image: t(15;17)(q22;q12) associated with double ider(17)(q10)t(15;17). (C) FISH study using a PML-RARA dual-color, dual-fusion translocation probe (Abbott Molecular/Vysis, USA) at diagnosis. The arrows indicate the PML-RARA or RARA-PML fusion signals. Left image: ider(17)(q10)t(15;17) clone (3 fusion signals). Right image: double ider(17)(q10)t(15;17) clone (5 fusion signals).


Reference

1. Swerdlow SH, Campo E, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 2008. 4th ed. Lyon: IARC;p. 112–114.
2. Lengfelder E, Saussele S, Weisser A, Büchner T, Hehlmann R. Treatment concepts of acute promyelocytic leukemia. Crit Rev Oncol Hematol. 2005; 56:261–274. PMID: 16236522.
Article
3. Sirulnik LA, Stone RM. Acute promyelocytic leukemia: current strategies for the treatment of newly diagnosed disease. Clin Adv Hematol Oncol. 2005; 3:391–397. 429PMID: 16167012.
4. Xu L, Zhao WL, Xiong SM, Su XY, Zhao M, Wang C, et al. Molecular cytogenetic characterization and clinical relevance of additional, complex and/or variant chromosome abnormalities in acute promyelocytic leukemia. Leukemia. 2001; 15:1359–1368. PMID: 11516096.
Article
5. Hiorns LR, Swansbury GJ, Mehta J, Min T, Dainton MG, Treleaven J, et al. Additional chromosome abnormalities confer worse prognosis in acute promyelocytic leukaemia. Br J Haematol. 1997; 96:314–321. PMID: 9029019.
Article
6. Cervera J, Montesinos P, Hernández-Rivas JM, Calasanz MJ, Aventín A, Ferro MT, et al. Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Haematologica. 2010; 95:424–431. PMID: 19903674.
Article
7. Hernández JM, Martín G, Gutiérrez NC, Cervera J, Ferro MT, Calasanz MJ, et al. Additional cytogenetic changes do not influence the outcome of patients with newly diagnosed acute promyelocytic leukemia treated with an ATRA plus anthracyclin based protocol. A report of the Spanish group PETHEMA. Haematologica. 2001; 86:807–813. PMID: 11522536.
8. Chou WC, Tang JL, Yao M, Liang YJ, Lee FY, Lin MT, et al. Clinical and biological characteristics of acute promyelocytic leukemia in Taiwan: a high relapse rate in patients with high initial and peak white blood cell counts during all-trans retinoic acid treatment. Leukemia. 1997; 11:921–928. PMID: 9204969.
Article
9. Kaleem Z, Watson MS, Zutter MM, Blinder MA, Hess JL. Acute promyelocytic leukemia with additional chromosomal abnormalities and absence of Auer rods. Am J Clin Pathol. 1999; 112:113–118. PMID: 10396293.
Article
10. Manola KN, Karakosta M, Sambani C, Terzoudi G, Pagoni M, Gatsa E, et al. Isochromosome der(17)(q10)t(15;17) in acute promyelocytic leukemia resulting in an additional copy of the RARA-PML fusion gene: report of 4 cases and review of the literature. Acta Haematol. 2010; 123:162–170. PMID: 20224268.
11. Kim M, Lee SA, Park HI, Oh EJ, Park CW, Lim J, et al. Two distinct clonal populations in acute promyelocytic leukemia, one involving chromosome 17 and the other involving an isochromosome 17. Cancer Genet Cytogenet. 2010; 197:185–188. PMID: 20193853.
Article
12. Sainty D, Liso V, Cantù-Rajnoldi A, Head D, Mozziconacci MJ, Arnoulet C, et al. A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. Group Français de Cytogénétique Hématologique, UK Cancer Cytogenetics Group and BIOMED 1 European Coomunity-Concerted Acion "Molecular Cytogenetic Diagnosis in Haematological Malignancies.". Blood. 2000; 96:1287–1296. PMID: 10942370.
13. Kim MJ, Yoon HS, Cho SY, Lee HJ, Suh JT, Lee J, et al. ider(17)(q10)t(15;17) associated with relapse and poor prognosis in a pediatric patient with acute promyelocytic leukemia. Cancer Genet Cytogenet. 2010; 201:116–121. PMID: 20682396.
Article
14. Simmers RN, Webber LM, Shannon MF, Garson OM, Wong G, Vadas MA, et al. Localization of the G-CSF gene on chromosome 17 proximal to the breakpoint in the t(15;17) in acute promyelocytic leukemia. Blood. 1987; 70:330–332. PMID: 2439153.
Article
15. Prigogina EL, Fleischman EW, Puchkova GP, Mayakova SA, Volkova MA, Protasova AK, et al. Chromosomes in acute nonlymphocytic leukemia. Hum Genet. 1986; 73:137–146. PMID: 3721500.
Article
16. Schoch C, Haase D, Haferlach T, Freund M, Link H, Lengfelder E, et al. Incidence and implication of additional chromosome aberrations in acute promyelocytic leukaemia with translocation t(15;17)(q22;q21): a report on 50 patients. Br J Haematol. 1996; 94:493–500. PMID: 8790148.
Article
17. Qiu HR, Li JY, Miao KR, Wang R, Xu W. Clinical and laboratory studies of an acute promyelocytic leukemia patient with double ider(17q) chromosome aberration. Cancer Genet Cytogenet. 2008; 184:74–75. PMID: 18558295.
Article
18. Kim MJ, Yoon HS, Lim G, Kim SY, Lee HJ, Suh JT, et al. ABL1 gene deletion without BCR/ABL1 rearrangement in a young adolescent with precursor B-cell acute lymphoblastic leukemia: clinical study and literature review. Cancer Genet Cytogenet. 2010; 196:184–188. PMID: 20082857.
Article
Full Text Links
  • KJLM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr