Exp Mol Med.  2002 Mar;34(1):75-82.

Expression of integrins, cyclooxygenases and matrix metalloproteinases in three-dimensional human endometrial cell culture system

Affiliations
  • 1Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul.

Abstract

The objective of this investigation was to establish a three-dimensionally cultured human endometrium which could be used as a tissue model for the mechanism study of implantation in vitro. By using human endometrial stromal (ES) and epithelial cells (EE) from hysterectomy specimens, reconstruction of endometrium in culture was established by first layering a collagen gel containing ES cells, then overlaying with the Matrigel containing endometrial epithelial (EE) cells. Ultrastructural examination of the 48 h-endometrial cell culture revealed monolayered columnar EE cells with microvilli on the collagen layer containing ES cells and appearance of the tight junctions and desmosomes between EE cells, a cell layer closely resembling the native endometrium. Immunohistochemical characterization of the reconstructed endometrium showed a strong immunoreactivity for cytokeratin, integrin alpha1, alpha4 and beta3 subunits, cyclooxygenases-1 and -2, matrix metalloproteinases-1, -2, -3 and -9, and tissue inhibitor of metalloproteinases-1 and -2 in the EE cells comparable to the native endometrial epithelium. ES cells also showed stronger immunoreactivity for cyclooxygenases, integrins and MMPs, but less for cytokeratin. Gelatin zymographic analyses of the media obtained from the reconstructed endometrium model showed gelatinase activity bands at 57, 60, 72, 92 and 97 kDa molecular weight, respectively. The present study provides a possibility that our three-dimensionally cultured endometrium model could mimic the morphological and functional characteristics of the native endometrium. The model could be used to clarify the roles of various molecules involved in the human implantation.


MeSH Terms

Adult
Cell Culture/*methods
Endometrium/*cytology
Female
Human
Integrins/genetics/*metabolism
Isoenzymes/genetics/*metabolism
Matrix Metalloproteinases/genetics/*metabolism
Microscopy, Electron
Models, Biological
Prostaglandin-Endoperoxide Synthase/genetics/*metabolism
Protease Inhibitors/metabolism
Tissue Inhibitor-of Metalloproteinase-2/metabolism
Tissue-Inhibitor of Metalloproteinase-1/metabolism
Full Text Links
  • EMM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr