J Vet Sci.  2011 Sep;12(3):221-226. 10.4142/jvs.2011.12.3.221.

Determination of staphylococcal exotoxins, SCCmec types, and genetic relatedness of Staphylococcus intermedius group isolates from veterinary staff, companion animals, and hospital environments in Korea

Affiliations
  • 1Department of Microbiology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, Korea. koohj@snu.ac.kr
  • 2National Veterinary Research and Quarantine Service, Ministry of Agriculture and Forestry, Anyang 430-856, Korea.

Abstract

The Staphylococcus (S.) intermedius group (SIG) has been a main research subject in recent years. S. pseudintermedius causes pyoderma and otitis in companion animals as well as foodborne diseases. To prevent SIG-associated infection and disease outbreaks, identification of both staphylococcal exotoxins and staphylococcal cassette chromosome mec (SCCmec) types among SIG isolates may be helpful. In this study, it was found that a single isolate (one out of 178 SIG isolates examined) harbored the canine enterotoxin SEC gene. However, the S. intermedius exfoliative toxin gene was found in 166 SIG isolates although the S. aureus-derived exfoliative toxin genes, such as eta, etb and etd, were not detected. SCCmec typing resulted in classifying one isolate as SCCmec type IV, 41 isolates as type V (including three S. intermedius isolates), and 10 isolates as non-classifiable. Genetic relatedness of all S. pseudintermedius isolates recovered from veterinary staff, companion animals, and hospital environments was determined by pulsed-field gel electrophoresis. Strains having the same band patterns were detected in S. pseudintermedius isolates collected at 13 and 18 months, suggesting possible colonization and/or expansion of a specific S. pseudintermedius strain in a veterinary hospital.

Keyword

methicillin-resistant Staphylococcus intermedius group; Staphylococcus intermedius group; Staphylococcus pseudintermedius; toxin

MeSH Terms

Animals
Bacterial Toxins/genetics/metabolism
Cat Diseases/epidemiology/*microbiology
Cats
Chromosomes, Bacterial/genetics/metabolism
Dog Diseases/epidemiology/*microbiology
Dogs
Electrophoresis, Gel, Pulsed-Field/veterinary
Enterotoxins/genetics/metabolism
Exfoliatins/genetics/metabolism
Exotoxins/*genetics/metabolism
Hospitals, Animal
Humans
Medical Staff, Hospital
Molecular Sequence Data
Pets/microbiology
Polymerase Chain Reaction/veterinary
Republic of Korea/epidemiology
Staphylococcal Infections/epidemiology/microbiology/*veterinary
Staphylococcus/genetics/isolation & purification
Staphylococcus intermedius/*genetics/*isolation & purification

Figure

  • Fig. 1 Staphylococcal enterotoxins A (sea), B (seb), C (sec), D (sed), E (see), G (seg), H (she), and I (sei), and the toxic shock syndrome toxin 1 (tsst-1) were detected by single or multiplex polymerase chain reaction (PCR) in 178 SIG isolates collected from veterinary staff, companion animals, and veterinary hospital environments in Korea. Genomic DNA from FRI913, FRI 361, FRI 472, FRI 569, MNHOCH, and RN4220 were used as controls. Multiplex PCR for sec, tsst-1/see, seg, sei/seb, sed, and seh and uniplex PCR for sea were performed. Only a single isolate from a veterinary staff (H1-23, hand) was positive for sec.

  • Fig. 2 The PCR-amplified sec gene sequence from the Staphylococcus (S.) pseudindermedius isolate H1-23 collected from a veterinary staff member was aligned with that of sec genes encoding S. intermedius SECcanine from the S. intermedius gene. Nucleotide sequences with GenBank numbers U91526, X05815, DQ192646, and X51661 were used for the alignment analysis of seccanine, sec1, sec2, and sec3, respectively. Aligment was peformed using the Vector NTI Align X program.

  • Fig. 3 Comparison of S. intermedius group isolates from the H veterinary hospital between September 2006 and October 2009 using pulsed-field gel electrophoresis (PFGE) to detect identical PFGE patterns between isolates from veterinary staff, companion animals, and veterinary hospital environments collected on the same and different sampling dates. Lane M: Lambda Ladder PFG Marker (50~1,000 kb); Lanes 1~3 (SI) from single CA#1 (dog: anus, nasal mucosa, skin); Lane 4 (SI), VS#1 (nasal mucosa); Lanes 5~6 (SI) from single VS#2 (nasal mucosa, hand); Lanes 7~8 (SP) from a single CA#3 (dog: ear canal, ear canal); Lane 9 (SP), VS#3 (nasal mucosa); Lanes 10~11 (SP) from a single CA#4 (dog: anus, nasal mucosa); Lane 12 (SP), CA#5 (anus); Lane 13 (SP) VS#4 (nasal mucosa); Lane 14 (SP) VS#5 (nasal mucosa); Lane 15 (SP) VS#6 (nasal mucosa); Lane 16 (SP) CA#6 (anus); Lane 17 (SP) VS#7 (nasal mucosa); Lane 18 (SP) VS#8 (nasal mucosa); Lane 19 (SP) VHE#1 (floor); Lane 20 (SP) CA#7 (anus). CA: companion animal, VS: veterinary staff, VHE: veterinary hospital environment, SI: Staphylococcus intermedius, SP: Staphylococcus pseudintermedius.


Reference

1. Balaban N, Rasooly A. Staphylococcal enterotoxins. Int J Food Microbiol. 2000. 61:1–10.
Article
2. Bannoehr J, Franco A, Iurescia M, Battisti A, Fitzgerald JR. Molecular diagnostic identification of Staphylococcus pseudintermedius. J Clin Microbiol. 2009. 47:469–471.
Article
3. Baron F, Cochet MF, Pellerin JL, Ben Zakour N, Lebon A, Navarro A, Proudy I, Le Loir Y, Gautier M. Development of a PCR test to differentiate between Staphylococcus aureus and Staphylococcus intermedius. J Food Prot. 2004. 67:2302–2305.
Article
4. Boye K, Bartels MD, Andersen IS, Møller JA, Westh H. A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I-V. Clin Microbiol Infect. 2007. 13:725–727.
Article
5. Chuang CY, Yang YL, Hsueh PR, Lee PI. Catheter-related bacteremia caused by Staphylococcus pseudintermedius refractory to antibiotic-lock therapy in a hemophilic child with dog exposure. J Clin Microbiol. 2010. 48:1497–1498.
Article
6. Frank LA, Kania SA, Kirzeder EM, Eberlein LC, Bemis DA. Risk of colonization or gene transfer to owners of dogs with meticillin-resistant Staphylococcus pseudintermedius. Vet Dermatol. 2009. 20:496–501.
Article
7. Futagawa-Saito K, Makino S, Sunaga F, Kato Y, Sakurai-Komada N, Ba-Thein W, Fukuyasu T. Identification of first exfoliative toxin in Staphylococcus pseudintermedius. FEMS Microbiol Lett. 2009. 301:176–180.
Article
8. Herschleb J, Ananiev G, Schwartz DC. Pulsed-field gel electrophoresis. Nat Protoc. 2007. 2:677–684.
Article
9. Higuchi W, Takano T, Teng LJ, Yamamoto T. Structure and specific detection of staphylococcal cassette chromosome mec type VII. Biochem Biophys Res Commun. 2008. 377:752–756.
Article
10. Ishihara K, Shimokubo N, Sakagami A, Ueno H, Muramatsu Y, Kadosawa T, Yanagisawa C, Hanaki H, Nakajima C, Suzuki Y, Tamura Y. Occurrence and molecular characteristics of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius in an academic veterinary hospital. Appl Environ Microbiol. 2010. 76:5165–5174.
Article
11. Kadlec K, Schwarz S, Perreten V, Andersson UG, Finn M, Greko C, Moodley A, Kania SA, Frank LA, Bemis DA, Franco A, Iurescia M, Battisti A, Duim B, Wagenaar JA, van Duijkeren E, Weese JS, Fitzgerald JR, Rossano A, Guardabassi L. Molecular analysis of methicillin-resistant Staphylococcus pseudintermedius of feline origin from different European countries and North America. J Antimicrob Chemother. 2010. 65:1826–1828.
Article
12. Lautz S, Kanbar T, Alber J, Lämmler C, Weiss R, Prenger-Berninghoff E, Zschöck M. Dissemination of the gene encoding exfoliative toxin of Staphylococcus intermedius among strains isolated from dogs during routine microbiological diagnostics. J Vet Med B Infect Dis Vet Public Health. 2006. 53:434–438.
Article
13. Lim SK, Nam HM, Park HJ, Lee HS, Choi MJ, Jung SC, Lee JY, Kim YC, Song SW, Wee SH. Prevalence and characterization of methicillin-resistant Staphylococcus aureus in raw meat in Korea. J Microbiol Biotechnol. 2010. 20:775–778.
14. Loeffler A, Linek M, Moodley A, Guardabassi L, Sung JML, Winkler M, Weiss R, Lloyd DH. First report of multiresistant, mecA-positive Staphylococcus intermedius in Europe: 12 cases from a veterinary dermatology referral clinic in Germany. Vet Dermatol. 2007. 18:412–421.
Article
15. McClure JA, Conly JM, Elsayed S, Zhang K. Multiplex PCR assay to facilitate identification of the recently described staphylococcal cassette chromosome mec type VIII. Mol Cell Probes. 2010. 24:229–232.
Article
16. Nakaminami H, Noguchi N, Ikeda M, Hasui M, Sato M, Yamamoto S, Yoshida T, Asano T, Senoue M, Sasatsu M. Molecular epidemiology and antimicrobial susceptibilities of 273 exfoliative toxin-encoding-gene-positive Staphylococcus aureus isolates from patients with impetigo in Japan. J Med Microbiol. 2008. 57:1251–1258.
Article
17. Okuma K, Iwakawa K, Turnidge JD, Grubb WB, Bell JM, O'Brien FG, Coombs GW, Pearman JW, Tenover FC, Kapi M, Tiensasitorn C, Ito T, Hiramatsu K. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol. 2002. 40:4289–4294.
Article
18. Oliveira DC, de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2002. 46:2155–2161.
Article
19. Omoe K, Ishikawa M, Shimoda Y, Hu DL, Ueda S, Shinagawa K. Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates harboring seg, seh, or sei genes. J Clin Microbiol. 2002. 40:857–862.
20. Omoe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K. Comprehensive analysis of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus aureus isolates. FEMS Microbiol Lett. 2005. 246:191–198.
Article
21. Perreten V, Kadlec K, Schwarz S, Grönlund Andersson U, Finn M, Greko C, Moodley A, Kania SA, Frank LA, Bemis DA, Franco A, Iurescia M, Battisti A, Duim B, Wagenaar JA, van Duijkeren E, Weese JS, Fitzgerald JR, Rossano A, Guardabassi L. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: an international multicentre study. J Antimicrob Chemother. 2010. 65:1145–1154.
Article
22. Ruscher C, Lübke-Becker A, Semmler T, Wleklinski CG, Paasch A, Šoba A, Stamm I, Kopp P, Wieler LH, Walther B. Widespread rapid emergence of a distinct methicillin- and multidrug-resistant Staphylococcus pseudintermedius (MRSP) genetic lineage in Europe. Vet Microbiol. 2010. 144:340–346.
Article
23. Sasaki T, Kikuchi K, Tanaka Y, Takahashi N, Kamata S, Hiramatsu K. Methicillin-resistant Staphylococcus pseudintermedius in a veterinary teaching hospital. J Clin Microbiol. 2007. 45:1118–1125.
Article
24. Sato H, Matsumori Y, Tanabe T, Saito H, Shimizu A, Kawano J. A new type of staphylococcal exfoliative toxin from a Staphylococcus aureus strain isolated from a horse with phlegmon. Infect Immun. 1994. 62:3780–3785.
Article
25. Sila J, Sauer P, Kolar M. Comparison of the prevalence of genes coding for enterotoxins, exfoliatins, panton-valentine leukocidin and tsst-1 between methicillin-resistant and methicillin-susceptible isolates of Staphylococcus aureus at the university hospital in Olomouc. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2009. 153:215–218.
Article
26. Stegmann R, Burnens A, Maranta CA, Perreten V. Human infection associated with methicillin-resistant Staphylococcus pseudintermedius ST71. J Antimicrob Chemother. 2010. 65:2047–2048.
Article
27. Terauchi R, Sato H, Hasegawa T, Yamaguchi T, Aizawa C, Maehara N. Isolation of exfoliative toxin from Staphylococcus intermedius and its local toxicity in dogs. Vet Microbiol. 2003. 94:19–29.
Article
28. Van Hoovels L, Vankeerberghen A, Boel A, Van Vaerenbergh K, De Beenhouwer H. First case of Staphylococcus pseudintermedius infection in a human. J Clin Microbiol. 2006. 44:4609–4612.
Article
29. Weese JS, van Duijkeren E. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet Microbiol. 2010. 140:418–429.
Article
30. Yoo JH, Yoon JW, Lee SY, Park HM. High prevalence of Fluoroquinolone- and Methicillin-resistant Staphylococcus pseudintermedius isolates from canine pyoderma and otitis externa in veterinary teaching hospital. J Microbiol Biotechnol. 2010. 20:798–802.
31. Yoon JW, Lee GJ, Lee SY, Park C, Yoo JH, Park HM. Prevalence of genes for enterotoxins, toxic shock syndrome toxin 1 and exfoliative toxin among clinical isolates of Staphylococcus pseudintermedius from canine origin. Vet Dermatol. 2010. 21:484–489.
Article
32. Youn JH, Hwang SY, Kim SH, Koo HC, Shin S, Lim SK, Park YH. mecA gene transferrability and antibiogram of zoonotic Staphylococcus intermedius from animals, staff and the environment in animal hospitals in Korea. J Microbiol Biotechnol. 2010. 20:425–432.
33. Youn JH, Yoon JW, Koo HC, Lim SK, Park YH. Prevalence and antimicrogram of Staphylococcus intermedius group isolates from veterinary staff, companion animals, and the environment in veterinary hospitals in Korea. J Vet Diagn Invest. 2011. 23:268–274.
Article
Full Text Links
  • JVS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr