Yonsei Med J.  2011 Nov;52(6):879-891. 10.3349/ymj.2011.52.6.879.

Multidrug-Resistant Acinetobacter spp.: Increasingly Problematic Nosocomial Pathogens

Affiliations
  • 1Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea. whonetkor@yuhs.ac

Abstract

Pathogenic bacteria have increasingly been resisting to antimicrobial therapy. Recently, resistance problem has been relatively much worsened in Gram-negative bacilli. Acinetobacter spp. are typical nosocomial pathogens causing infections and high mortality, almost exclusively in compromised hospital patients. Acinetobacter spp. are intrinsically less susceptible to antibiotics than Enterobacteriaceae, and have propensity to acquire resistance. A surveillance study in Korea in 2009 showed that resistance rates of Acinetobacter spp. were very high: to fluoroquinolone 67%, to amikacin 48%, to ceftazidime 66% and to imipenem 51%. Carbapenem resistance was mostly due to OXA type carbapenemase production in A. baumannii isolates, whereas it was due to metallo-beta-lactamase production in non-baumannii Acinetobacter isolates. Colistin-resistant isolates were rare but started to be isolated in Korea. Currently, the infection caused by multidrug-resistant A. baumannii is among the most difficult ones to treat. Analysis at tertiary care hospital in 2010 showed that among the 1,085 isolates of Acinetobacter spp., 14.9% and 41.8% were resistant to seven, and to all eight antimicrobial agents tested, respectively. It is known to be difficult to prevent Acinetobacter spp. infection in hospitalized patients, because the organisms are ubiquitous in hospital environment. Efforts to control resistant bacteria in Korea by hospitals, relevant scientific societies and government agencies have only partially been successful. We need concerted multidisciplinary efforts to preserve the efficacy of currently available antimicrobial agents, by following the principles of antimicrobial stewardship.

Keyword

Acinetobacter baumannii; multidrug resistance; OXA type carbapenemase; metallo-beta-lactamase

MeSH Terms

Acinetobacter/classification/*drug effects/genetics/metabolism
Anti-Bacterial Agents/pharmacology
Bacterial Proteins/metabolism
Drug Resistance, Multiple, Bacterial/genetics
beta-Lactamases/metabolism

Figure

  • Fig. 1 Major reservoirs, sources, and transmission patterns for Acineto-bacter infections in hospitalized patients.


Cited by  4 articles

Clinical Outcomes of Tigecycline in the Treatment of Multidrug-Resistant Acinetobacter baumannii Infection
Jung Ar Shin, Yoon Soo Chang, Hyung Jung Kim, Se Kyu Kim, Joon Chang, Chul Min Ahn, Min Kwang Byun
Yonsei Med J. 2012;53(5):974-984.    doi: 10.3349/ymj.2012.53.5.974.

In Vivo Selection of Pan-Drug Resistant Acinetobacter baumannii during Antibiotic Treatment
Yoonjung Kim, Il Kwon Bae, Seok Hoon Jeong, Dongeun Yong, Kyungwon Lee
Yonsei Med J. 2015;56(4):928-934.    doi: 10.3349/ymj.2015.56.4.928.

Trend of Bacterial Resistance for the Past 50 Years in Korea and Future Perspectives - Gram-negative Bacteria
Kyungwon Lee
Infect Chemother. 2011;43(6):458-467.    doi: 10.3947/ic.2011.43.6.458.

Increase in the Prevalence of Carbapenem-Resistant Acinetobacter Isolates and Ampicillin-Resistant Non-Typhoidal Salmonella Species in Korea: A KONSAR Study Conducted in 2011
Dongeun Yong, Hee Bong Shin, Yong-kyun Kim, Jihyun Cho, Wee Gyo Lee, Gyoung Yim Ha, Tae Yeal Choi, Seok Hoon Jeong, Kyungwon Lee, Yunsop Chong,
Infect Chemother. 2014;46(2):84-93.    doi: 10.3947/ic.2014.46.2.84.


Reference

1. Salyers AA, Whitt DD. Revenge of the microbes: how bacterial resistance is undermining the antibiotic miracle. 2005. Washington, DC: ASM Press.
2. Brötz-Oesterhelt H, Sass P. Postgenomic strategies in antibacterial drug discovery. Future Microbiol. 2010. 5:1553–1579.
Article
3. Woodford N, Livermore DM. Infections caused by Gram-positive bacteria: a review of the global challenge. J Infect. 2009. 59:Suppl 1. S4–S16.
Article
4. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010. 10:597–602.
Article
5. Marchaim D, Zaidenstein R, Lazarovitch T, Karpuch Y, Ziv T, Weinberger M. Epidemiology of bacteremia episodes in a single center: increase in Gram-negative isolates, antibiotics resistance, and patient age. Eur J Clin Microbiol Infect Dis. 2008. 27:1045–1051.
Article
6. Ho J, Tambyah PA, Paterson DL. Multiresistant Gram-negative infections: a global perspective. Curr Opin Infect Dis. 2010. 23:546–553.
Article
7. Maragakis LL, Perl TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis. 2008. 46:1254–1263.
Article
8. Bergogne-Bérézin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996. 9:148–165.
Article
9. Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008. 358:1271–1281.
10. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008. 21:538–582.
Article
11. Jean SS, Hsueh PR. High burden of antimicrobial resistance in Asia. Int J Antimicrob Agents. 2011. 37:291–295.
Article
12. Nemec A, Krizova L, Maixnerova M, van der Reijden TJ, Deschaght P, Passet V, et al. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol. 2011. 162:393–404.
Article
13. Bouvet PJ, Grimont PA. Identification and biotyping of clinical isolates of Acinetobacter. Ann Inst Pasteur Microbiol. 1987. 138:569–578.
14. Dortet L, Legrand P, Soussy CJ, Cattoir V. Bacterial identification, clinical significance, and antimicrobial susceptibilities of Acinetobacter ursingii and Acinetobacter schindleri, two frequently misidentified opportunistic pathogens. J Clin Microbiol. 2006. 44:4471–4478.
Article
15. Lee Y, Lee J, Jeong SH, Lee J, Bae IK, Lee K. Carbapenem-non-susceptible Acinetobacter baumannii of sequence type 92 or its single-locus variants with a G428T substitution in zone 2 of the rpoB gene. J Antimicrob Chemother. 2011. 66:66–72.
Article
16. Wendt C, Dietze B, Dietz E, Rüden H. Survival of Acinetobacter baumannii on dry surfaces. J Clin Microbiol. 1997. 35:1394–1397.
Article
17. Jawad A, Seifert H, Snelling AM, Heritage J, Hawkey PM. Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J Clin Microbiol. 1998. 36:1938–1941.
Article
18. Getchell-White SI, Donowitz LG, Gröschel DH. The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus. Infect Control Hosp Epidemiol. 1989. 10:402–407.
Article
19. Petersen K, Cannegieter SC, van der Reijden TJ, van Strijen B, You DM, Babel BS, et al. Diversity and clinical impact of Acinetobacter baumannii colonization and infection at a military medical center. J Clin Microbiol. 2011. 49:159–166.
Article
20. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol. 2008. 29:996–1011.
Article
21. Lee K, Kim MN, Kim JS, Hong HL, Kang JO, Shin JH, et al. Further increases in carbapenem-, amikacin-, and fluoroquinolone-resistant isolates of Acinetobacter spp. and P. aeruginosa in Korea: KONSAR Study 2009. Yonsei Med J. 2011. 52:793–802.
Article
22. Wu CJ, Lee HC, Lee NY, Shih HI, Ko NY, Wang LR, et al. Predominance of Gram-negative bacilli and increasing antimicrobial resistance in nosocomial bloodstream infections at a university hospital in southern Taiwan, 1996-2003. J Microbiol Immunol Infect. 2006. 39:135–143.
23. Song JY, Cheong HJ, Choi WS, Heo JY, Noh JY, Kim WJ. Clinical and microbiological characterization of carbapenem-resistant Acinetobacter baumannii bloodstream infections. J Med Microbiol. 2011. 60:605–611.
Article
24. Kim JW, Heo ST, Jin JS, Choi CH, Lee YC, Jeong YG, et al. Characterization of Acinetobacter baumannii carrying blaOXA-23, blaPER-1 and armA in a Korean hospital. Clin Microbiol Infect. 2008. 14:716–718.
25. Styers D, Sheehan DJ, Hogan P, Sahm DF. Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann Clin Microbiol Antimicrob. 2006. 5:2.
26. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 1983. 11:315–317.
Article
27. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev. 2005. 18:657–686.
Article
28. Bauernfeind A, Chong Y, Schweighart S. Extended broad spectrum β-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection. 1989. 17:316–321.
Article
29. Kim J, Kwon Y, Pai H, Kim JW, Cho DT. Survey of Klebsiella pneumoniae strains producing extended-spectrum β-lactamases: prevalence of SHV-12 and SHV-2a in Korea. J Clin Microbiol. 1998. 36:1446–1449.
Article
30. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001. 45:1151–1161.
Article
31. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009. 53:5046–5054.
Article
32. Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med. 2010. 362:1804–1813.
Article
33. Vila J, Martí S, Sánchez-Céspedes J. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother. 2007. 59:1210–1215.
Article
34. Hujer KM, Hamza NS, Hujer AM, Perez F, Helfand MS, Bethel CR, et al. Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, ADC-7 β-lactamase: defining a unique family of class C enzymes. Antimicrob Agents Chemother. 2005. 49:2941–2948.
Article
35. Corvec S, Caroff N, Espaze E, Giraudeau C, Drugeon H, Reynaud A. AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J Antimicrob Chemother. 2003. 52:629–635.
Article
36. Lin YC, Hsia KC, Chen YC, Sheng WH, Chang SC, Liao MH, et al. Genetic basis of multidrug resistance in Acinetobacter clinical isolates in Taiwan. Antimicrob Agents Chemother. 2010. 54:2078–2084.
Article
37. Lee Y, Kim CK, Lee H, Jeong SH, Yong D, Lee K. A novel insertion sequence, ISAba10, inserted into ISAba1 adjacent to the blaOXA-23 gene and disrupting the outer membrane protein gene carO in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011. 55:361–363.
Article
38. Fournier PE, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2006. 2:e7.
39. Falagas ME, Koletsi PK, Bliziotis IA. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J Med Microbiol. 2006. 55:1619–1629.
Article
40. Paterson DL, Doi Y. A step closer to extreme drug resistance (XDR) in gram-negative bacilli. Clin Infect Dis. 2007. 45:1179–1181.
Article
41. Mera RM, Miller LA, Amrine-Madsen H, Sahm DF. Acinetobacter baumannii 2002-2008: increase of carbapenem-associated multiclass resistance in the United States. Microb Drug Resist. 2010. 16:209–215.
Article
42. Lee K, Lee MA, Lee CH, Lee J, Roh KH, Kim S, et al. Increase of ceftazidime- and fluoroquinolone-resistant Klebsiella pneumoniae and imipenem-resistant Acinetobacter spp. in Korea: analysis of KONSAR study data from 2005 and 2007. Yonsei Med J. 2010. 51:901–911.
Article
43. Poirel L, Menuteau O, Agoli N, Cattoen C, Nordmann P. Outbreak of extended-spectrum β-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital. J Clin Microbiol. 2003. 41:3542–3547.
Article
44. Nordmann P, Ronco E, Naas T, Duport C, Michel-Briand Y, Labia R. Characterization of a novel extended-spectrum β-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1993. 37:962–969.
Article
45. Yong D, Shin JH, Kim S, Lim Y, Yum JH, Lee K, et al. High prevalence of PER-1 extended-spectrum β-lactamase-producing Acinetobacter spp. in Korea. Antimicrob Agents Chemother. 2003. 47:1749–1751.
Article
46. Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010. 54:969–976.
Article
47. Lee K, Lim JB, Yum JH, Yong D, Chong Y, Kim JM, et al. blaVIM-2 cassette-containing novel integrons in metallo-β-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob Agents Chemother. 2002. 46:1053–1058.
Article
48. Yum JH, Yi K, Lee H, Yong D, Lee K, Kim JM, et al. Molecular characterization of metallo-β-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the blaVIM-2 gene cassettes. J Antimicrob Chemother. 2002. 49:837–840.
Article
49. Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, et al. Novel acquired metallo-β-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother. 2005. 49:4485–4491.
Article
50. Sung JY, Kwon KC, Park JW, Kim YS, Kim JM, Shin KS, et al. Dissemination of IMP-1 and OXA type β-lactamase in carbapenem-resistant Acinetobacter baumannii. Korean J Lab Med. 2008. 28:16–23.
Article
51. Lim YM, Shin KS, Kim J. Distinct antimicrobial resistance patterns and antimicrobial resistance-harboring genes according to genomic species of Acinetobacter isolates. J Clin Microbiol. 2007. 45:902–905.
Article
52. Lee JH, Choi CH, Kang HY, Lee JY, Kim J, Lee YC, et al. Differences in phenotypic and genotypic traits against antimicrobial agents between Acinetobacter baumannii and Acinetobacter genomic species 13TU. J Antimicrob Chemother. 2007. 59:633–639.
Article
53. Lee K, Kim MN, Choi TY, Cho SE, Lee S, Whang DH, et al. Wide dissemination of OXA-type carbapenemases in clinical Acinetobacter spp. isolates from South Korea. Int J Antimicrob Agents. 2009. 33:520–524.
Article
54. Brown S, Amyes S. OXA β-lactamases in Acinetobacter: the story so far. J Antimicrob Chemother. 2006. 57:1–3.
55. Jeon BC, Jeong SH, Bae IK, Kwon SB, Lee K, Young D, et al. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 β-lactamase in Korea. J Clin Microbiol. 2005. 43:2241–2245.
Article
56. Yang HY, Lee HJ, Suh JT, Lee KM. Outbreaks of imipenem resistant Acinetobacter baumannii producing OXA-23 β-lactamase in a tertiary care hospital in Korea. Yonsei Med J. 2009. 50:764–770.
Article
57. Lee K, Lee WG, Uh Y, Ha GY, Cho J, Chong Y. Korean Nationwide Surveillance of Antimicrobial Resistance Group. VIM- and IMP-type metallo-β-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg Infect Dis. 2003. 9:868–871.
Article
58. Kim CK, Lee Y, Lee H, Woo GJ, Song W, Kim MN, et al. Prevalence and diversity of carbapenemases among imipenem-nonsusceptible Acinetobacter isolates in Korea: emergence of a novel OXA-182. Diagn Microbiol Infect Dis. 2010. 68:432–438.
Article
59. Higgins PG, Poirel L, Lehmann M, Nordmann P, Seifert H. OXA-143, a novel carbapenem-hydrolyzing class D β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother. 2009. 53:5035–5038.
Article
60. Lin MF, Kuo HY, Yeh HW, Yang CM, Sung CH, Tu CC, et al. Emergence and dissemination of blaOXA-23-carrying imipenem-resistant Acinetobacter sp in a regional hospital in Taiwan. J Microbiol Immunol Infect. 2011. 44:39–44.
Article
61. Mendes RE, Bell JM, Turnidge JD, Castanheira M, Jones RN. Emergence and widespread dissemination of OXA-23, -24/40 and -58 carbapenemases among Acinetobacter spp. in Asia-Pacific nations: report from the SENTRY Surveillance Program. J Antimicrob Chemother. 2009. 63:55–59.
Article
62. Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993. 57:138–163.
Article
63. Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother. 2006. 50:4114–4123.
Article
64. Lee H, Yong D, Yum JH, Roh KH, Lee K, Yamane K, et al. Dissemination of 16S rRNA methylase-mediated highly amikacin-resistant isolates of Klebsiella pneumoniae and Acinetobacter baumannii in Korea. Diagn Microbiol Infect Dis. 2006. 56:305–312.
Article
65. Hooper DC. Mechanisms of fluoroquinolone resistance. Drug Resist Updat. 1999. 2:38–55.
Article
66. Karlowsky JA, Kelly LJ, Thornsberry C, Jones ME, Evangelista AT, Critchley IA, et al. Susceptibility to fluoroquinolones among commonly isolated Gram-negative bacilli in 2000: TRUST and TSN data for the United States. Tracking Resistance in the United States Today. The Surveillance Network. Int J Antimicrob Agents. 2002. 19:21–31.
Article
67. Koo SH, Kwon KC, Cho HH, Sung JY. Genetic basis of multidrug-resistant Acinetobacter baumannii clinical isolates from three university hospitals in Chungcheong Province, Korea. Korean J Lab Med. 2010. 30:498–506.
Article
68. Martínez-Martínez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet. 1998. 351:797–799.
Article
69. Touati A, Brasme L, Benallaoua S, Gharout A, Madoux J, De Champs C. First report of qnrB-producing Enterobacter cloacae and qnrA-producing Acinetobacter baumannii recovered from Algerian hospitals. Diagn Microbiol Infect Dis. 2008. 60:287–290.
Article
70. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev. 2009. 22:664–689.
Article
71. Wang YF, Dowzicky MJ. In vitro activity of tigecycline and comparators on Acinetobacter spp. isolates collected from patients with bacteremia and MIC change during the Tigecycline Evaluation and Surveillance Trial, 2004 to 2008. Diagn Microbiol Infect Dis. 2010. 68:73–79.
Article
72. Damier-Piolle L, Magnet S, Brémont S, Lambert T, Courvalin P. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother. 2008. 52:557–562.
Article
73. Song JY, Kee SY, Hwang IS, Seo YB, Jeong HW, Kim WJ, et al. In vitro activities of carbapenem/sulbactam combination, colistin, colistin/rifampicin combination and tigecycline against carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother. 2007. 60:317–322.
Article
74. Park YK, Choi JY, Song JH, Ko KS. In vitro activity of tigecycline against colistin-resistant Acinetobacter spp. isolates from Korea. Int J Antimicrob Agents. 2009. 33:289–290.
Article
75. Arroyo LA, Mateos I, González V, Aznar J. In vitro activities of tigecycline, minocycline, and colistin-tigecycline combination against multi- and pandrug-resistant clinical isolates of Acinetobacter baumannii group. Antimicrob Agents Chemother. 2009. 53:1295–1296.
Article
76. Peleg AY, Potoski BA, Rea R, Adams J, Sethi J, Capitano B, et al. Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J Antimicrob Chemother. 2007. 59:128–131.
Article
77. Roh KH, Kim CK, Yum JH, Yong D, Jeong SH, Lim CS, et al. Carbapenem Resistance Mechanisms and Molecular Epidemiology of Acinetobacter spp. from Four Hospitals in Seoul and Gyeonggi Province in 2006. Korean J Clin Microbiol. 2010. 13:27–33.
Article
78. Ko KS, Suh JY, Kwon KT, Jung SI, Park KH, Kang CI, et al. High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea. J Antimicrob Chemother. 2007. 60:1163–1167.
Article
79. Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, et al. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother. 2009. 53:3628–3634.
Article
80. Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. 2010. 54:4971–4977.
Article
81. Sykes R. The 2009 Garrod lecture: the evolution of antimicrobial resistance: a Darwinian perspective. J Antimicrob Chemother. 2010. 65:1842–1852.
Article
82. Talbot GH. The antibiotic development pipeline for multidrug-resistant gram-negative bacilli: current and future landscapes. Infect Control Hosp Epidemiol. 2010. 31:Suppl 1. S55–S58.
Article
83. MacDougall C, Polk RE. Antimicrobial stewardship programs in health care systems. Clin Microbiol Rev. 2005. 18:638–656.
Article
84. Fishman N. Antimicrobial stewardship. Am J Med. 2006. 119:S53–S61.
Article
85. Livermore DM. Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis. 2003. 36:S11–S23.
Article
86. Kwak YG, Cho YK, Kim JY, Lee SO, Kim HY, Kim YK, et al. Korean Nosocomial Infections Surveillance System, Intensive Care Unit Module Report: Data Summary from July 2008 through June 2009 and Analysis of 3-Year Results. Korean J Nosocomial Infect Control. 2010. 15:14–25.
87. Lu PL, Doumith M, Livermore DM, Chen TP, Woodford N. Diversity of carbapenem resistance mechanisms in Acinetobacter baumannii from a Taiwan hospital: spread of plasmid-borne OXA-72 carbapenemase. J Antimicrob Chemother. 2009. 63:641–647.
Article
88. Peterson LR, Diekema DJ. To screen or not to screen for methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2010. 48:683–689.
Article
89. Carlet J, Fabry J, Amalberti R, Degos L. The "zero risk" concept for hospital-acquired infections: a risky business! Clin Infect Dis. 2009. 49:747–749.
Article
90. Yuji K, Oiso G, Matsumura T, Murashige N, Kami M. Police investigation into multidrug-resistant Acinetobacter baumannii outbreak in Japan. Clin Infect Dis. 2011. 52:422.
Article
91. Song JH, Jung KS, Kang MW, Kim DJ, Pai H, Suh GY, et al. Treatment Guidelines for Community-acquired Pneumonia in Korea: An Evidence-based Approach to Appropriate Antimicrobial Therapy. Tuberc Respir Dis. 2009. 67:281–302.
Article
92. Park S, Soumerai SB, Adams AS, Finkelstein JA, Jang S, Ross-Degnan D. Antibiotic use following a Korean national policy to prohibit medication dispensing by physicians. Health Policy Plan. 2005. 20:302–309.
Article
93. Metlay JP, Shea JA, Crossette LB, Asch DA. Tensions in antibiotic prescribing: pitting social concerns against the interests of individual patients. J Gen Intern Med. 2002. 17:87–94.
94. Liew YX, Lee W, Kwa AL, Lye DC, Yeo CL, Hsu LY. Inappropriate carbapenem use in Singapore public hospitals: opportunities for antimicrobial stewardship. Int J Antimicrob Agents. 2011. 37:87–88.
Article
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr