Exp Mol Med.
2007 Jun;39(3):335-342.
An inhibitory compound against the interaction between Galpha(s) and the third intracellular loop region of serotonin receptor subtype 6 (5-HT(6)) disrupts the signaling pathway of 5-HT(6)
- Affiliations
-
- 1Life Sciences Division, Korea Institute of Science and Technology, Seoul 130-650, Korea.
- 2Biomedical Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea.
- 3Department of Chemistry, Kookmin University, Seoul 136-702, Korea. ygyu@kookmin.ac.kr
Abstract
- Serotonin receptor subtype 6 (5-HT(6)) is a neurotransmitter receptor, which is involved in various brain functions such as memory and mood. It mediates signaling via the interaction with a stimulatory G-protein. Especially, the third intracellular loop (iL3) of 5-HT(6) and the alpha subunit of stimulatory G protein (Galpha(s)) are responsible for the signaling process of 5-HT(6). Chemical compounds that could inhibit the interaction between the iL3 region of 5-HT(6) and Galpha(s) were screened from a chemical library consisted of 5,600 synthetic compounds. One of the identified compounds bound to Galpha(s) and effectively blocked the interaction between Galpha(s) and the iL3 region of 5-HT(6). The identified compound was further shown to reduce the serotonin-induced accumulation of cAMP in 293T cells transformed with 5-HT(6) cDNA. It also lowered the Ca2+ efflux induced by serotonin in cells expressing 5-HT(6) and chimeric Galpha(s5/q). These results indicate that the interaction between the iL3 of 5-HT(6) and Galpha(s) can be exploited for screening of regulatory compounds against the signaling pathway of 5-HT(6).