J Prev Med Public Health.  2008 Jan;41(1):61-67. 10.3961/jpmph.2008.41.1.61.

Effects of the Exposure to Polycyclic Aromatic Hydrocarbons or Toluene on Thiobarbituric Acid Reactive Substance Level in Elementary School Children and the Elderly in a Rural Area

Affiliations
  • 1Environmental Epidemiology Division, Environmental Health Research Department, National Institute of Environmental Research, Korea.
  • 2Department of Preventive Medicine, College of Medicine, Chungbuk National University, Korea. kimheon@cbu.ac.kr

Abstract

OBJECTIVES: Polycyclic aromatic hydrocarbons (PAH) and toluene have been reported to induce reactive oxygen species and oxidative stress. This study was performed to investigate the effects of low level exposure to PAHs or toluene on the lipid peroxidation level in elementary school children and the elderly in a rural area. METHODS: Forty seven elementary school children and 40 elderly people who were living in a rural area and not occupationally exposed to PAH or toluene were the subjects of this study. Information about active or passive smoking and diet was obtained using a self-administered questionnaire. The urinary 1-hydroxypyrene (1-OHP), 2-naphthol, hippuric acid and thiobarbituric acid reactive substance (TBARS) concentrations were measured, and these values were corrected with the urinary creatinine concentration. RESULTS: In school children, the geometric means of the urinary 1-OHP, 2-naphthol, hippuric acid and TBARS levels were 0.02 ymol/mol creatinine, 0.47 micron mol/mol creatinine, 0.14 g/g creatinine and 0.95 micron mol/g creatinine, respectively. Those values for the elderly were 0.07 micron mol/mol creatinine, 1.87 micron mol/mol creatinine, 0.11 g/g creatinine and 1.18 micron mol/g creatinine, respectively. The mean levels of urinary 1-OHP, 2-naphthol and TBARS were significantly higher in the elderly subjects than in the children. The urinary TBARS level was not correlated with the urinary 1-OHP, 2-naphthol and hippuric acid, but they were correlated with the age of the subjects. CONCLSIONS: These results suggest that low level inhalation exposure to PAH or toluene does not markedly increase lipid peroxidation, and age is a significant determinant of lipid peroxidation.

Keyword

Polycyclic aromatic hydrocarbon (PAH); 1-Hydroxypyrene (1-OHP); 2-Naphthol; Hippuric acid; Thiobarbituric acid reactive substance (TBARS)

MeSH Terms

Child
Environmental Exposure/*adverse effects
Environmental Pollutants/*toxicity
Female
Humans
Male
Middle Aged
Polycyclic Hydrocarbons, Aromatic/*toxicity
*Rural Population
Thiobarbituric Acid Reactive Substances/*analysis
Toluene/*toxicity
Urinalysis
Full Text Links
  • JPMPH
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr