Journal Browser Advanced Search Help
Journal Browser Advanced search HELP
Kidney Res Clin Pract. 2015 Dec;34(4):219-227. English. Brief Communication.
Lee JW .
Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
Kidney Research Institute, Seoul National University, Seoul, Korea.

To understand the functions of the kidney, the transcriptome of each part of the nephron needs to be profiled using a highly sensitive and unbiased tool. RNA sequencing (RNA-seq) has revolutionized transcriptomic research, enabling researchers to define transcription activity and functions of genomic elements with unprecedented sensitivity and precision. Recently, RNA-seq for polyadenylated messenger RNAs [poly(A)'-mRNAs] and classical microdissection were successfully combined to investigate the transcriptome of glomeruli and 14 different renal tubule segments. A rat kidney is perfused with and incubated in collagenase solution, and the digested kidney was manually dissected under a stereomicroscope. Individual glomeruli and renal tubule segments are identified by their anatomical and morphological characteristics and collected in phosphate-buffered saline. Poly(A)'-tailed mRNAs are released from cell lysate, captured by oligo-dT primers, and made into complementary DNAs (cDNAs) using a highly sensitive reverse transcription method. These cDNAs are sheared by sonication and prepared into adapter-ligated cDNA libraries for Illumina sequencing. Nucleotide sequences reported from the sequencing reaction are mapped to the rat reference genome for gene expression analysis. These RNA-seq transcriptomic data were highly consistent with prior knowledge of gene expression along the nephron. The gene expression data obtained in this work are available as a public Web page ( and can be used to explore the transcriptomic landscape of the nephron.

Copyright © 2019. Korean Association of Medical Journal Editors.