Journal Browser Advanced Search Help
Journal Browser Advanced search HELP
Electrolyte Blood Press. 2009 Dec;7(2):58-66. English. Original Article.
Jung JY , Lee JW , Kim S , Jung ES , Jang HR , Han JS , Joo KW .
Department of Internal Medicine, Laboratory of Molecular Nephrology, Gachon University of Medicine and Science, Incheon, Korea.
Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea.

Uninephrectomy (uNx) in young rats causes salt-sensitive hypertension (SSH). Alterations of sodium handling in residual nephrons may play a role in the pathogenesis. Therefore, we evaluated the adaptive alterations of renal sodium transporters according to salt intake in uNx-SSH rats. uNx or sham operations were performed in male Sprague-Dawley rats, and normal-salt diet was fed for 4 weeks. Four experimental groups were used: sham-operated rats raised on a high-salt diet for 2 weeks (CHH) or on a low-salt diet for 1 week after 1 week's high-salt diet (CHL) and uNx rats fed on the same diet (NHH, NHL) as the sham-operated rats were fed. Expression of major renal sodium transporters were determined by semiquantitative immunoblotting. Systolic blood pressure was increased in NHH and NHL groups, compared with CHH and CHL, respectively. Protein abundances of Na+/K+/2Cl- cotransporter (NKCC2) and Na+/Cl- cotransporter (NCC) in the CHH group were lower than the CHL group. Expression of epithelial sodium channel (ENaC)-gamma increased in the CHH group. In contrast, expressions of NKCC2 and NCC in the NHH group didn't show any significant alterations, compared to the NHL group. Expressions of ENaC-alpha and ENaC-beta in the NHH group were higher than the CHH group. Adaptive alterations of NKCC2 and NCC to changes of salt intake were different in the uNx group, and changes in ENaC-alpha and ENaC-beta were also different. These altered regulations of sodium transporters may be involved in the pathogenesis of SSH in the uNx rat model.

Copyright © 2019. Korean Association of Medical Journal Editors.