Journal Browser Advanced Search Help
Journal Browser Advanced search HELP
Int Neurourol J. 2016 May;20(Suppl 1):S38-S48. English. Original Article.
Trinh KT , Zhang H , Kang DJ , Kahng SH , Tall BD , Lee NY .
Department of BioNano Technology, Gachon University, Seongnam, Korea.
Korea Institute of Ocean Science & Technology, Ansan, Korea.
Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, USA.
Gil Medical Center, Gachon Medical Research Institute, Incheon, Korea.

PURPOSE: We aim to fabricate a thermoplastic poly(methylmethacrylate) (PMMA) Lab-on-a-Chip device to perform continuous- flow polymerase chain reactions (PCRs) for rapid molecular detection of foodborne pathogen bacteria. METHODS: A miniaturized plastic device was fabricated by utilizing PMMA substrates mediated by poly(dimethylsiloxane) interfacial coating, enabling bonding under mild conditions, and thus avoiding the deformation or collapse of microchannels. Surface characterizations were carried out and bond strength was measured. The feasibility of the Lab-on-a-Chip device for performing on-chip PCR utilizing a lab-made, portable dual heater was evaluated. The results were compared with those obtained using a commercially available thermal cycler. RESULTS: A PMMA Lab-on-a-Chip device was designed and fabricated for conducting PCR using foodborne pathogens as sample targets. A robust bond was established between the PMMA substrates, which is essential for performing miniaturized PCR on plastic. The feasibility of on-chip PCR was evaluated using Escherichia coli O157:H7 and Cronobacter condimenti, two worldwide foodborne pathogens, and the target amplicons were successfully amplified within 25 minutes. CONCLUSIONS: In this study, we present a novel design of a low-cost and high-throughput thermoplastic PMMA Lab-on-a-Chip device for conducting microscale PCR, and we enable rapid molecular diagnoses of two important foodborne pathogens in minute resolution using this device. In this regard, the introduced highly portable system design has the potential to enable PCR investigations of many diseases quickly and accurately.

Copyright © 2019. Korean Association of Medical Journal Editors.