Journal Browser Advanced Search Help
Journal Browser Advanced search HELP
Korean J Lab Med. 2010 Jun;30(3):295-300. Korean. Original Article. https://doi.org/10.3343/kjlm.2010.30.3.295
Song JH , Sung JY , Kwon KC , Park JW , Cho HH , Shin SY , Ko YH , Kim JM , Shin KS , Koo SH .
Department of Laboratory Medicine, College of Medicine, Chungnam National University, Daejeon, Korea. shkoo@cnu.ac.kr
Department of Laboratory Medicine, Eulji University Hospital, Daejeon, Korea.
Department of Laboratory Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea.
Abstract

BACKGROUND: Stenotrophomonas maltophilia is a gram-negative bacillus and a nosocomial pathogen in immunocompromised patients. Trimethoprim/sulfamethoxazole (TMP/SMX) is the drug of choice for treating S. maltophilia infection; however, resistance to TMP/SMX is increasing. In this study, we investigated the relationship between the incidence of TMP/SMX resistance and the presence of sul genes and mobile elements. METHODS: A total of 120 S. maltophilia isolates were collected from 3 university hospitals between April 2007 and April 2009. Antimicrobial susceptibilities were determined using the disk diffusion method. PCR and DNA sequencing were conducted for the detection of sul1, sul2, class 1 integron, and ISCR2 element. Repetitive extragenic palindromic sequence-based PCR (REP-PCR) was carried out to evaluate the genetic relatedness. RESULTS: The TMP/SMX-resistant (R) isolates harbored a significantly higher proportion of sul1 gene and class 1 integron than TMP/SMX-susceptible (S) isolates (P<0.001). Seventeen of 28 isolates with sul1 also had a class 1 integron, but none of the isolates without sul1 had a class 1 integron. The identified gene cassettes within class 1 integrons include aacA4, aadA1, aac6'-II, and qac. None of the 120 isolates carried sul2, glmM, or ISCR2 element. REP-PCR did not show any genetic relatedness among the isolates. CONCLUSIONS: In Korea, the resistance of S. maltophilia isolates to TMP/SMX is due to sul1 within a class 1 integron rather than to sul2. The class 1 integron also harbors multiple antibiotic resistance genes in addition to sul1, and therefore it could mediate multidrug resistance in S. maltophilia.

Copyright © 2019. Korean Association of Medical Journal Editors.