1. Tolhurst DJ, Movshon JA. Spatial and temporal contrast sensitivity of striate cortical neurones. Nature. 1975. 257:674–675.
2. Albrecht DG, Hamilton DB. Striate cortex of monkey and cat: contrast response function. J Neurophysiol. 1982. 48:217–237.
3. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962. 160:106–154.
4. Campbell FW, Cleland BG, Cooper GF, Enroth-Cugell C. The angular selectivity of visual cortical cells to moving gratings. J Physiol. 1968. 198:237–250.
5. Campbell FW, Cooper GF, Enroth-Cugell C. The spatial selectivity of the visual cells of the cat. J Physiol. 1969. 203:223–235.
6. Maffei L, Fiorentini A. The visual cortex as a spatial frequency analyser. Vision Res. 1973. 13:1255–1267.
7. Schiller PH, Finlay BL, Volman SF. Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. J Neurophysiol. 1976. 39:1334–1351.
8. Movshon JA, Thompson ID, Tolhurst DJ. Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. J Physiol. 1978. 283:101–120.
9. De Valois RL, Albrecht DG, Thorell LG. Spatial frequency selectivity of cells in macaque visual cortex. Vision Res. 1982. 22:545–559.
10. Sclar G, Freeman RD. Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast. Exp Brain Res. 1982. 46:457–461.
11. Skottun BC, Bradley A, Ramoa AS. Effect of contrast on spatial frequency tuning of neurones in area 17 of cat's visual cortex. Exp Brain Res. 1986. 63:431–435.
12. Skottun BC, Bradley A, Sclar G, et al. The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. J Neurophysiol. 1987. 57:773–786.
13. Anderson JS, Lampl I, Gillespie DC, Ferster D. The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science. 2000. 290:1968–1972.
14. Alitto HJ, Usrey WM. Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. J Neurophysiol. 2004. 91:2797–2808.
15. Sceniak MP, Hawken MJ, Shapley R. Contrast-dependent changes in spatial frequency tuning of macaque V1 neurons: effects of a changing receptive field size. J Neurophysiol. 2002. 88:1363–1373.
16. Jones JP, Stepnoski A, Palmer LA. The two-dimensional spectral structure of simple receptive fields in cat striate cortex. J Neurophysiol. 1987. 58:1212–1232.
17. Hammond P, Pomfrett CJ. Influence of spatial frequency on tuning and bias for orientation and direction in the cat's striate cortex. Vision Res. 1990. 30:359–369.
18. Park YH, Kim JN. Spatial frequency and velocity tunings of neurons in areas 17 and 18 of the cat using a 100 microelectrode array. Korean J Lab Anim Sci. 2004. 20:26–30.
19. Rousche PJ, Normann RA. A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann Biomed Eng. 1992. 20:413–422.
20. Tusa RJ, Palmer LA, Rosenquist AC. The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol. 1978. 177:213–235.
21. Gilbert CD. Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol. 1977. 268:391–421.
22. Hammond P, Ahmed B. Length summation of complex cells in cat striate cortex: a reappraisal of the "special/standard" classification. Neuroscience. 1985. 15:639–649.
23. Henry GH, Bishop PO, Tupper RM, Dreher B. Orientation specificity and response variability of cells in the striate cortex. Vision Res. 1973. 13:1771–1779.
24. Dean AF. The relationship between response amplitude and contrast for cat striate cortical neurones. J Physiol. 1981. 318:413–427.
25. Peterson MR, Li B, Freeman RD. Direction selectivity of neurons in the striate cortex increases as stimulus contrast is decreased. J Neurophysiol. 2006. 95:2705–2712.