Yonsei Med J.  2007 Jun;48(3):347-359. 10.3349/ymj.2007.48.3.347.

Current Issues on Molecular and Immunological Diagnosis of Tuberculosis

Affiliations
  • 1Department of Microbiology and Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea. 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Korea. raycho@yumc.yonsei.ac.kr

Abstract

aboratory diagnosis of tuberculosis (TB) traditionally relies on smear microscopy and culture of Mycobacterium tuberculosis from clinical samples. With recent advances in technology, there have been numerous efforts to develop new diagnostic tests for TB that overcome the low sensitivity and specificity and long turnover time associated with current diagnostic tests. Molecular biological tests based on nucleic acid amplification have brought an unprecedented opportunity for the rapid and specific detection of M. tuberculosis from clinical specimens. With automated sequencing analysis, species identification of mycobacteria is now easier and more accurate than with conventional methods, and rapid detection of mutations in the genes associated with resistance to TB drugs provides early information on the potential drug resistance for each clinical isolate or for clinical samples. In addition, immunological tests for the detection of M. tuberculosis antigens and antibodies to the antigens have been explored to identify individuals at risk of developing TB or with latent TB infection (LTBI). The recent introduction of commercial IFN-gamma assay kits for the detection of LTBI provides a new approach for TB control even in areas with a high incidence of TB. However, these molecular and immunological tools still require further evaluation using large scale cohort studies before implementation in TB control programs.

Keyword

Tuberculosis; sero diagnosis; molecular diagnosis; interferon-gamma

MeSH Terms

Antigens, Bacterial/immunology
DNA, Bacterial/chemistry/genetics
Humans
Immunologic Tests/*methods
Interferon-gamma/analysis
Mycobacterium tuberculosis/genetics/immunology
Sequence Analysis, DNA
Tuberculin Test
Tuberculosis/*diagnosis/immunology/microbiology

Cited by  1 articles

Clinical Usefulness of Real-time PCR and Amplicor MTB PCR Assays for Diagnosis of Tuberculosis
Chae Lim Jung, Mi Kyung Kim, Dong Chun Seo, Mi Ae Lee
Korean J Clin Microbiol. 2008;11(1):29-33.    doi: 10.5145/kjcm.2008.11.1.29.


Reference

1. Greco S, Girardi E, Navarra A, Saltini C. Current evidence on diagnostic accuracy of commercially based nucleic acid amplification tests for the diagnosis of pulmonary tuberculosis. Thorax. 2006. 61:783–790.
Article
2. Flores LL, Pai M, Colford JM, Riley LW. In-house nucleic acid amplification tests for the detection of Mycobacterium tuberculosis in sputum specimens: meta-analysis and meta-regression. BMC Microbiol. 2005. 5:55.
3. Pai M, Flores LL, Pai N, Hubbard A, Riley LW, Colford JM. Diagnostic accuracy of nucleic acid amplification tests for tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect Dis. 2003. 3:633–643.
Article
4. Pai M, Flores LL, Hubbard A, Riley LW, Colford JM. Nucleic acid amplification tests in the diagnosis of tuberculous pleuritis: a systematic review and meta-analysis. BMC Infect Dis. 2004. 4:6.
Article
5. Piersimoni C, Scarparo C. Relevance of commercial amplification methods for direct detection of Mycobacterium tuberculosis complex in clinical samples. J Clin Microbiol. 2003. 41:5355–5365.
Article
6. Pai M, Kalantri S, Dheda K. New tools and emerging technologies for the diagnosis of tuberculosis: part I. Latent tuberculosis. Expert Rev Mol Diagn. 2006. 6:413–422.
Article
7. Tiwari RP, Hattikudur NS, Bharmal RN, Kartikeyan S, Deshmukh NM, Bisen PS. Modern approaches to a rapid diagnosis of tuberculosis: promises and challenges ahead. Tuberculosis (Edinb). 2007. 87:193–201.
Article
8. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000. 28:e63.
Article
9. Iwamoto T, Sonobe T, Hayashi K. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M avium, and M. intracellulare in sputum samples. J Clin Microbiol. 2003. 41:2616–2622.
Article
10. Boehme CC, Nabeta P, Henostroza G, Raqib R, Rahim Z, Gerhardt M, et al. Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J Clin Microbiol. 2007. 45:1936–1940.
Article
11. Butler WR, Jost KC, Kilburn JO. Identification of mycobacteria by high-performance liquid chromatography. J Clin Microbial. 1994. 29:2468–2472.
Article
12. Thibert L, Lapierre S. Routine application of high-performance liquid chromatography for identification of mycobacteria. J Clin Microbiol. 1993. 31:1759–1763.
Article
13. Goto M, Oka S, Okuzumi K, Kimura S, Shimada K. Evaluation of acridinium-ester labeled DNA probes for identification of Mycobacterium tuberculosis and Mycobacterium avium-Mycobacterium intracellulare complex in culture. J Clin Microbiol. 1991. 29:2473–2476.
Article
14. Lebrun L, Espinasse F, Poveda JD, Vincent-Levy-Frebault V. Evaluation of nonradioactive DNA probes for identification of mycobacteria. J Clin Microbiol. 1992. 30:2476–2478.
Article
15. Rogall T, Flohr T, Bottger EC. Differentiation of Mycobacterium species by direct sequencing of amplified DNA. J Gen Microbiol. 1990. 136:1915–1920.
Article
16. Rogall T, Wolters J, Flohr T, Bottger EC. Towards a phylogeny and identification of species at the molecular level within the geneus Mycobacterium. Int J Syst Bacteriol. 1990. 40:323–330.
Article
17. Lee H, Park HJ, Cho SN, Bai GH, Kim SJ. Species identification of mycobacteria by PCR restriction fragment length polymorphism of the rpoB gene. J Clin Microbiol. 2000. 38:2966–2971.
Article
18. Lee H, Bang HE, Bai GH, Cho SN. Novel polymorphic region of the rpoB gene containing Mycobacterium species-specific sequences and its use in identification of Mycobacteria. J Clin Microbiol. 2003. 41:2213–2218.
Article
19. Plikaytis BB, Plikaytis BD, Yakrus MA, Butler WR, Woodley CL, Silcox VA, et al. Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis, by gene amplification and restriction fragment length polymorphism analysis. J Clin Microbiol. 1992. 30:1815–1822.
Article
20. Kim HJ, Mun HS, Kim H, Oh EJ, Ha Y, Bai GH, et al. Differentiation of mycobacterial species by hsp65 duplex PCR-based restriction analysis and direct sequencing. J Clin Microbiol. 2006. 44:3855–3862.
Article
21. Dye C, Espinal MA, Watt CJ, Mbiaga C, Williams BG. Worldwide incidence of multidrug-resistant tuberculosis. J Infect Dis. 2002. 185:1197–1202.
Article
22. Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U, et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet. 2006. 368:1575–1580.
Article
23. Garrigo M, Aragon LM, Alcaide F, Borrell S, Cardenosa E, Galan JJ, et al. Multicenter laboratory evaluation of the MB/BacT Mycobacterium detection system and the BACTEC MGIT 960 system in comparison with the BACTEC 460TB system for susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol. 2007. 45:1766–1770.
Article
24. Zhang Y, Telenti A. Hatfull GR, Jacobs WR, editors. Genetics of drug resistance in Mycobacterium tuberculosis. Molecular Genetics of Mycobacteria. 2000. Washington, DC: ASM Press;235–254.
25. Cooksey RC, Morlock GP, Glickman S, Crawford JT. Evaluation of a line probe assay kit for characterization of rpoB mutations in rifampin-resistant Mycobacterium tuberculosis isolates from New York City. J Clin Microbiol. 1997. 35:1281–1283.
Article
26. Cavusoglu C, Turhan A, Akinci P, Soyler I. Evaluation of the Genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis isolates. J Clin Microbiol. 2006. 44:2338–2342.
Article
27. Morgan M, Kalantri S, Flores L, Pai M. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2005. 5:62.
28. Barry CE, Slayden RA, Mdluli K. Mechanisms of isoniazid resistance in Mycobacterium tuberculosis. Drug Resist Updat. 1998. 1:128–134.
29. Timmins GS, Deretic V. Mechanisms of action of isoniazid. Mol Microbiol. 2006. 62:1220–1227.
Article
30. Kiepiela P, Bishop KS, Smith AN, Roux L, York DF. Genomic mutaitons in the katG, inhA, and ahpC genes are useful for the prediction of isoniazid resistance in Mycobacterium tuberculosis isolates from Kwazulu Natal, South Africa. Tuber Lung Dis. 2000. 80:47–56.
Article
31. van Soolingen D, de Haas PE, van Doorn HR, Kuijper E, Rinder H, Borgdorff MW. Mutations at amino acid position 315 of the katG gene are associated with high-level resistance to isoniazid, other drug resistance, and successful transmission of Mycobacterium tuberculosis in the Netherlands. J Infect Dis. 2000. 182:1788–1790.
Article
32. Lee AS, Lim IH, Tang LL, Telenti A, Wong SY. Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore. Antimicrob Agents Chemother. 1999. 43:2087–2089.
Article
33. Lee H, Cho SN, Bang HE, Lee JH, Bai GH, Kim SJ, et al. Exclusive mutations related to isoniazid and ethionamide resistance among Mycobacterium tuberculosis isolates from Korea. Int J Tuberc Lung Dis. 2000. 4:441–447.
34. Guo H, Seet Q, Denkin S, Parsons L, Zhang Y. Molecular characterization of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from the USA. J Med Microbiol. 2006. 55:1527–1531.
Article
35. Miotto P, Piana F, Penati V, Canducci F, Migliori GB, Cirillo DM. Use of genotype MTBDR assay for molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical strains isolated in Italy. J Clin Microbiol. 2006. 44:2485–2491.
Article
36. Mokrousov I, Otten T, Vyshnevskiy B, Narvskaya O. Detection of embB306 mutations in ethambutol- susceptible clinical isolates of Mycobacterium tuberculosis from Northwestern Russia: implications for genotypic resistance testing. J Clin Microbiol. 2002. 40:3810–3813.
Article
37. Lee HY, Myoung HJ, Bang HE, Bai GH, Kim SJ, Kim JD, Cho SN. Mutations in the embB locus among Korean clinical isolates of Mycobacterium tuberculosis resistant to ethambutol. Yonsei Med J. 2002. 43:59–64.
Article
38. Sreevatsan S, Stockbauer KE, Pan X, Kreiswirth BN, Moghazeh SL, Jacobs WR, et al. Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob Agents Chemother. 1997. 41:1677–1681.
Article
39. Ramaswamy SV, Amin AG, Goksel S, Stager CE, Dou SJ, El Sahly H, et al. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2000. 44:326–336.
Article
40. Plinke C, Rusch-Gerdes S, Niemann S. Significance of mutations in embB codon 306 for prediction of ethambutol resistance in clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother. 2006. 50:1900–1902.
Article
41. Louw GE, Warren RM, Donald PR, Murray MB, Bosman M, Van Helden PD, et al. Frequency and implications of pyrazinamide resistance in managing previously treated tuberculosis patients. Int J Tuberc Lung Dis. 2006. 10:802–807.
42. Martin A, Takiff H, Vandamme P, Swings J, Palomino JC, Portaels F. A new rapid and simple colorimetric method to detect pyrazinamide resistance in Mycobacterium tuberculosis using nicotinamide. J Antimicrob Chemother. 2006. 58:327–331.
Article
43. Suzuki Y, Suzuki A, Tamaru A, Katsukawa C, Oda H. Rapid detection of pyrazinamide-resistant Mycobacterium tuberculosis by a PCR-based in vitro system. J Clin Microbiol. 2002. 40:501–507.
Article
44. Morlock GP, Crawford JT, Butler WR, Brim SE, Sikes D, Mazurek GH, et al. Phenotypic characterization of pncA mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2000. 44:2291–2295.
Article
45. Hirano K, Takahashi M, Kazumi Y, Fukasawa Y, Abe C. Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis. Tuber Lung Dis. 1997. 78:117–122.
Article
46. Scorpio A, Lindholm-Levy P, Heifets L, Gilman R, Siddiqi S, Cynamon M, et al. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1997. 41:540–543.
Article
47. Sreevatsan S, Pan X, Zhang Y, Kreiswirth BN, Musser JM. Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob Agents Chemother. 1997. 41:636–640.
Article
48. Sreevatsan S, Pan X, Stockbauer KE, Williams DL, Kreiswirth BN, Musser JM. Characterizaton of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob Agents Chemother. 1996. 40:1024–1026.
Article
49. Katsukawa C, Tamaru A, Miyata Y, Abe C, Makino M, Suzuki Y. Characterization of the rpsL and rrs genes of streptomycin-resistant clinical isolates of Mycobacterium tuberculosis in Japan. J Appl Microbiol. 1997. 83:634–640.
Article
50. Suzuki Y, Katsukawa C, Tamaru a, Abe C, Makino M, Mizuguchi Y, et al. Detection of kanamycin-resistant Mycobacterium tuberculosis by identifying mutations in the 16S rRNA gene. J Clin Microbiol. 1998. 36:1220–1225.
Article
51. Pitaksajjakul P, Wongwit W, Punprasit W, Eampokalap B, Peacock S, Ramasoota P. Mutations in the gyrA and gyrB genes of fluoroquinolone-resistant Mycobacterium tuberculosis from TB patients in Thailand. Southeast Asian J Trop Med Public Health. 2005. 36:Suppl 4. 228–237.
52. Giannoni F, Iona E, Sementilli F, Brunori L, Pardini M, Migliori GB, et al. Evaluation of a new line probe assay for rapid identification of gyrA mutations in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2005. 49:2928–2933.
Article
53. Singh P, Baveja CP, Talukdar B, Kumar S, Mathur MD. Diagnostic utility of ELISA test using antigen A60 in suspected cases of tuberculous meningitis in paediatric age group. Indian J Pathol Microbiol. 1999. 42:11–14.
54. Swaminathan S, Umadevi P, Shantha S, Radhakrishnan A, Datta M. Sero diagnosis of tuberculosis in children using two ELISA kits. Indian J Pediatr. 1999. 66:837–842.
Article
55. Kunter E, Cerrahoglu K, Ilvan A, Isitmangil T, Turken O, Okutan O, et al. The value of pleural fluid anti-A60 IgM in BCG-vaccinated tuberculous pleurisy patients. Clin Microbiol Infect. 2003. 9:212–220.
Article
56. Kalantri Y, Hemvani N, Bhatia GC, Chitnis DS. Elisa kit evaluation for IGG and IGM antibodies to A-60 tubercular protein antigen. Indian J Med Sci. 2005. 59:337–346.
Article
57. Wu HP, Hua CC, Yu CC, Wu SY. Comparison of plasma interferon-gamma and antigen 60 immunoglobulin G in diagnosing pulmonary Mycobacterium tuberculosis infection. Chang Gung Med J. 2005. 28:779–785.
58. Chang CL, Lee EY, Son HC, Park SK. Evaluating the usefulness of the ICT tuberculosis test kit for the diagnosis of tuberculosis. J Clin Pathol. 2000. 53:715–717.
Article
59. Mathur ML, LoBue PA, Catanzaro A. Evaluation of a serologic test for the diagnosis of tuberculosis. Int J Tuberc Lung Dis. 1999. 3:732–735.
60. Bartoloni A, Strohmeyer M, Bartalesi F, Messeri D, Tortoli E, Farese A, et al. Evaluation of a rapid immunochromatographic test for the serologic diagnosis of tuberculosis in Italy. Clin Microbiol Infect. 2003. 9:632–639.
Article
61. Perkins MD, Conde MB, Martins M, Kritski AL. Serologic diagnosis of tuberculosis using a simple commercial multiantigen assay. Chest. 2003. 123:107–112.
Article
62. Ongut G, Ogunc D, Gunseren F, Ogus C, Donmez L, Colak D, et al. Evaluation of the ICT Tuberculosis test for the routine diagnosis of tuberculosis. BMC Infect Dis. 2006. 6:37.
Article
63. Ratanasuwan W, Kreiss JK, Nolan CM, Schaeffler BA, Suwanagool S, Tunsupasawasdikul S, et al. Evaluation of the MycoDot test for the diagnosis of tuberculosis in HIV seropositive and seronegative patients. Int J Tuberc Lung Dis. 1997. 1:259–264.
64. Tsubura E, Yamanaka M, Sakatani M, Takashima T, Maekura R, Nakatani K. A cooperative clinical study on the evaluation of an antibody detection test kit (MycoDot Test) for mycobacterial infections. Comparative Study Group for MycoDot Test. Kekkaku. 1997. 72:611–615.
65. Del Prete R, Picca V, Mosca A, D'Alagni M, Miragliotta G. Detection of anti-lipoarabinomannan antibodies for the diagnosis of active tuberculosis. Int J Tuberc Lung Dis. 1998. 2:160–163.
66. Lawn SD, Frimpong EH, Nyarko E. Evaluation of a commercial immunodiagnostic kit incorporating lipoarabinomannan in the serodiagnosis of pulmonary tuberculosis in Ghana. Trop Med Int Health. 1997. 2:978–981.
Article
67. Somi GR, O'Brien RJ, Mfinanga GS, Ipuge YA. Evaluation of the MycoDot test in patients with suspected tuberculosis in a field setting in Tanzania. Int J Tuberc Lung Dis. 1999. 3:231–238.
68. Imaz MS, Comini MA, Zerbini E, Sequeira MD, Latini O, Claus JD, et al. Evaluation of commercial enzyme- linked immunosorbent assay kits for detection of tuberculosis in Argentinean population. J Clin Microbiol. 2004. 42:884–887.
Article
69. Butt T, Malik HS, Abbassi SA, Ahmad RN, Mahmood A, Karamat KA, et al. Genus and species-specific IgG and IgM antibodies for pulmonary tuberculosis. J Coll Physicians Surg Pak. 2004. 14:105–107.
70. Demkow U, Ziólkowski J, Filewska M, Bialas-Chromiec B, Zielonka T, Michalowska-Mitczuk O, et al. Diagnostic value of different serological tests for tuberculosis in Poland. J Physiol Pharmacol. 2004. 55:Suppl 3. 57–66.
71. Senol G, Erer OF, Yalcin YA, Coskun M, Gunduz AT, Bicmen C, et al. Humoral immune response against 38-kDa and 16-kDa mycobacterial antigens in tuberculosis. Eur Respir J. 2007. 29:143–148.
Article
72. Maekura R, Okuda Y, Nakagawa M, Hiraga T, Yokota S, Ito M, et al. Clinical evaluation of anti-tuberculous glycolipid immunoglobulin G antibody assay for rapid serodiagnosis of pulmonary tuberculosis. J Clin Microbiol. 2001. 39:3603–3608.
Article
73. Fujita Y, Ogata H, Yano I. Clinical evaluation of serodiagnosis of active tuberculosis by multiple-antigen ELISA using lipids from Mycobacterium bovis BCG Tokyo 172. Clin Chem Lab Med. 2005. 43:1253–1262.
74. Jolley ME, Nasir MS, Surujballi OP, Romanowska A, Renteria TB, De la Mora A, et al. Fluorescence polarization assay for the detection of antibodies to Mycobacterium bovis in bovine sera. Vet Microbiol. 2007. 120:113–121.
Article
75. Kim TJ, Cho HS, Park NY, Lee JI. Serodiagnostic comparison between two methods, ELISA and surface plasmon resonance for the detection of antibody titres of Mycoplasma hyopneumoniae. J Vet Med B Infect Dis Vet Public Health. 2006. 53:87–90.
Article
76. Sartain MJ, Slayden RA, Singh KK, Laal S, Belisle JT. Disease state differentiation and identification of tuberculosis biomarkers via native antigen array profiling. Mol Cell Proteomics. 2006. 5:2102–2113.
Article
77. Sumi MG, Mathai A, Reuben S, Sarada C, Radhakrishnan VV, Indulakshmi R, et al. A comparative evaluation of dot immunobinding assay (Dot-Iba) and polymerase chain reaction (PCR) for the laboratory diagnosis of tuberculous meningitis. Diagn Microbiol Infect Dis. 2002. 42:35–38.
Article
78. Mathai A, Radhakrishnan VV, Sarada C, George SM. Detection of heat stable mycobacterial antigen in cerebrospinal fluid by Dot-immunobinding assay. Neurol India. 2003. 51:52–54.
79. Bera S, Shende N, Kumar S, Harinath BC. Detection of antigen and antibody in childhood tuberculous meningitis. Indian J Pediatr. 2006. 73:675–679.
Article
80. Mudaliar AV, Kashyap RS, Purohit HJ, Taori GM, Daginawala HF. Detection of 65 kD heat shock protein in cerebrospinal fluid of tuberculous meningitis patients. BMC Neurol. 2006. 6:34.
Article
81. Venkatesh K, Parija SC, Mahadevan S, Negi VS. Reverse passive haemagglutination (RPHA) test for detection of mycobacterial antigen in the cerebrospinal fluid for diagnosis of tubercular meningitis. Indian J Tuberc. 2007. 54:41–48.
82. Hamasur B, Bruchfeld J, Haile M, Pawlowski A, Bjorvatn B, Kallenius G, et al. Rapid diagnosis of tuberculosis by detection of mycobacterial lipoarabinomannan in urine. J Microbiol Methods. 2001. 45:41–52.
Article
83. Tessema TA, Hamasur B, Bjun G, Svenson S, Bjorvatn B. Diagnostic evaluation of urinary lipoarabinomannan at an Ethiopian tuberculosis centre. Scand J Infect Dis. 2001. 33:279–284.
Article
84. Boehme C, Molokova E, Minja F, Geis S, Loscher T, Maboko L, et al. Detection of mycobacterial lipoarabinomannan with an antigen-capture ELISA in unprocessed urine of Tanzanian patients with suspected tuberculosis. Trans R Soc Trop Med Hyg. 2005. 99:893–900.
Article
85. Sada E, Aguilar D, Torres M, Herrera T. Detection of lipoarabinomannan as a diagnostic test for tuberculosis. J Clin Microbiol. 1992. 30:2415–2418.
Article
86. Banchuin N, Wongwajana S, Pumprueg U, Jearanaisilavong J. Value of an ELISA for mycobacterial antigen detection as a routine diagnostic test of pulmonary tuberculosis. Asian Pac J Allergy Immunol. 1990. 8:5–11.
87. Cho SN, Shin JS, Kim JD, Chong Y. Production of monoclonal antibodies to lipoarabinomannan-B and use in the detection of mycobacterial antigens in sputum. Yonsei Med J. 1990. 31:333–338.
Article
88. Pereira Arias-Bouda LM, Nguyen LN, Ho LM, Kuijper S, Jansen HM, Kolk AH. Development of antigen detection assay for diagnosis of tuberculosis using sputum samples. J Clin Microbiol. 2000. 38:2278–2283.
Article
89. Stavri H, Moldovan O, Mihaltan F, Banica D, Doyle RJ. Rapid dot sputum and serum assay in pulmonary tuberculosis. J Microbiol Methods. 2003. 52:285–296.
Article
90. Lardizabal AA, Reichman LB. Schlossberg D, editor. Diagnosis of latent tuberculosis infection. Tuberculosis & Nontuberculous Mycobacterial Infections. 2006. 5th ed. New York: McGraw-Hill;61–70.
Article
91. Arend SM, Engelhard AC, Groot G, de Boer K, Andersen P, Ottenhoff TH, et al. Tuberculin skin testing compared with T-cell reponses to Mycobacterium tuberculosis-specific and nonspecific antigens for detection of latent infection in persons with recent tuberculosis contact. Clin Diagn Lab Immunol. 2001. 8:1089–1096.
Article
92. Leyten EM, Mulder B, Prins C, Weldingh K, Andersen P, Ottenhoff TH, et al. Use of enzyme-linked immunospot assay with Mycobacterium tuberculosis-specific peptides for diagnosis of recent infection with M. tuberculosis after accidental laboratory exposure. J Clin Microbiol. 2006. 44:1197–1201.
Article
93. Connell TG, Rangaka MX, Curtis N, Wilkinson RJ. QuantiFERON-TB Gold: state of the art for the diagnosis of tuberculosis infection? Expert Rev Mol Diagn. 2006. 6:663–677.
Article
94. Pai M, Kalantri S, Dheda K. New tools and emerging technologies for the diagnosis of tuberculosis: part I. Latent tuberculosis. Expert Rev Mol Diagn. 2006. 6:413–422.
Article
95. Menzies D, Pai M, Comstock G. Meta-analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. Ann Intern Med. 2007. 146:340–354.
Article
96. Kang YA, Lee HW, Yoon HI, Cho B, Han SK, Shim YS, et al. Discrepancy between the tuberculin skin test and the whole-blood interferon gamma assay for the diagnosis of latent tuberculosis infection in an intermediate tuberculosis-burden country. JAMA. 2005. 293:2756–2761.
Article
97. Pai M, Gokhale K, Joshi R, Dogra S, Kalantri S, Mendiratta DK, et al. Mycobacterium tuberculosis infection in health care workers in rural India: comparison of a whole-blood interferon gamma assay with tuberculin skin testing. JAMA. 2005. 293:2746–2755.
Article
98. Wu HP, Hua CC, Chuang DY. Decreased in vitro interferon gamma production in patients with cavitary tuberculosis on chest radiography. Respir Med. 2007. 101:48–52.
Article
99. Porsa E, Cheng L, Seale MM, Delclos GL, Ma X, Reich R, et al. Comparison of a new ESAT-6/CFP-10 peptide-based gamma interferon assay and a tuberculin skin test for tuberculosis screening in a moderate-risk population. Clin Vaccine Immunol. 2006. 13:53–58.
Article
100. Mahomed H, Hughes EJ, Hawkridge T, Minnies D, Simon E, Little F, et al. Comparison of mantous skin test with three generations of a whole blood IFN-gamma assay for tuberculosis infection. Int J Tuberc Lung Dis. 2006. 10:310–316.
101. Lee JY, Choi HJ, Park IN, Hong SB, Oh YM, Lim CM, et al. Comparison of two commercial interferon- gamma assays for diagnosing Mycobacterium tuberculosis infection. Eur Respir J. 2006. 28:24–30.
Article
102. Ferrara G, Losi M, D'Amico R, Roversi P, Piro R, Meacci M, et al. Use in routine clinical practice of two commercial blood tests for diagnosis of infection with Mycobacterium tuberculosis: a prospective study. Lancet. 2006. 367:1328–1334.
Article
103. Arend SM, Thijsen SF, Leyten EM, Bouwman JJ, Franken WP, Koster BFP, et al. Comparison of two interferon-γ assays and tuberculin skin test for tracing tuberculosis contacts. Am J Respir Crit Care Med. 2007. 175:618–627.
Article
104. Ferrara G, Losi M, Meacci M, Meccugni B, Piro R, Roversi P, Bergamini BM, D'Amico R, Marchengiano P, Rumpianesi F, Fabbri LM, Richeldi L. Routine hospital use of a new commercial whole blood interferon-gamma assay for the diagnosis of tuberculosis infection. Am J Respir Crit Care Med. 2005. 172:631–635.
Article
105. Arend SM, Ottenhoff TH, Andersen P, van Dissel JT. Uncommon presentations of tuberculosis: the potential value of a novel diagnostic assay based on the Mycobacterium tuberculosis-specific antigens ESAT-6 and CFP-10. Int J Tuberc Lung Dis. 2001. 5:680–686.
106. Richeldi L, Ewer K, Losi M, Hansell DM, Roversi P, Fabbri LM, et al. Early diagnosis of subclinical multidrug-resistant tuberculosis. Ann Intern Med. 2004. 140:709–713.
Article
107. Gooding S, Chowdhury O, Hinks T, Richeldi L, Losi M, Ewer K, et al. Impact of a T cell-based blood test for tuberculosis infection on clinical decision-making in routine practice. J Infect. 2007. 54:e169–e174.
Article
108. Pai M, Joshi R, Dogra S, Mendiratta DK, Narang P, Dheda K, Kalantri S. Persistently elevated T cell interferon-gamma responses after treatment for latent tuberculosis infection among health care workers in India: a preliminary report. J Occup Med Toxicol. 2006. 1:7.
109. Pai M, Joshi R, Bandyopadhyay M, Narang P, Dogra S, Taksande B, et al. Sensitivity of a whole-blood interferon-gamma assay among patients with pulmonary tuberculosis and variations in T-cell responses during anti-tuberculosis treatment. Infect. 2007. 35:98–103.
Article
110. Aiken AM, Hill PC, Fox A, McAdam KP, Jackson-Sillah D, Lugos MD, et al. Reversion of the ELISPOT test after treatment in Gambian tuberculosis cases. BMC Infect Dis. 2006. 6:66.
Article
111. Goletti D, Parracino MP, Butera O, Bizzoni F, Casetti R, Dainotto D, et al. Isoniazid prophylaxis differently modulates T-cell responses to RD1-epitopes in contacts recently exposed to Mycobacterium tuberculosis: a pilot study. Respir Res. 2007. 8:5.
112. Pai M, Joshi R, Dogra S, Mendiratta DK, Narang P, Kalantri S, et al. Serial testing of health care workers for tuberculosis using interferon-gamma assay. Am J Respir Crit Care Med. 2006. 174:349–355.
Article
113. Richeldi L, Ewer K, Losi M, Roversi P, Fabbri LM, Lalvani A. Repeated tuberculin testing does not induce false positive ELISPOT results. Thorax. 2006. 61:180.
Article
114. Andersen P, Munk ME, Pollock JM, Doherty TM. Specific immune-based diagnosis of tuberculosis. Lancet. 2000. 356:1099–1104.
Article
115. Brock I, Ruhwald M, Lundgren B, Westh H, Mathiesen LR, Ravn P. Latent tuberculosis in HIV positive, diagnosed by the M. tuberculosis specific interferon-gamma test. Respir Res. 2006. 7:56.
116. Luetkemeyer AF, Charlebois ED, Flores LL, Bangsberg DR, Deeks SG, Martin JN, et al. Comparison of an interferon-gamma release assay with tuberculin skin testing in HIV-infected individuals. Am J Respir Crit Care Med. 2007. 175:737–742.
Article
117. Wu HP, Hua CC, Liu HY, Chuang DY. Comparison of interferon-gamma response between tuberculosis and non-tubercular pneumonia. Inflamm Res. 2007. 56:11–16.
Article
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr