Yonsei Med J.  1987 Sep;28(3):176-182. 10.3349/ymj.1987.28.3.176.

Mechanism of Low K+-induced Depolarization in Mammalian Cardiac Muscle

Affiliations
  • 1Department of Physiology, Yonsei University College of Medicine, Seoul, Korea.

Abstract

The membrane permeability to potassium at a resting state is greater than to any other ions and the maintenance of resting membrane potential is largely dependent on K+ concentration of outside medium (Hodgkin and Horowicz 1959), i.e. an increase of K+ concentration of medium induces a depolarization, vice versa. However, on the contrary to this prediction, in some mammalian heart muscle a reduction of external K+ concentration induces a depolarization of membrane potential rather than a hyperpolarization (Vassalle 1965). In this study it was aimed to elucidate the possible mechanism of spontaneous depolarization induced by low external K+ in canine Purkinje fibers. The membrane potential was constantly recorded while components of cations in the bathing medium were replaced one by one by equimolar sucrose until the low K+ induced depolarization was blocked. The results are summarized as follows; The membrane potential of canine Purkinje fibers was spontaneously depolarized by low external K+, and the magnitude of depolarization was not affected by verapamil TEA, and a partial replacement of external Na+ and Ca2+ with choline chloride. But the membrane potential was hyperpolarized only when the all external cations were substitued with sucrose; and this hyperpolarization was disappeared again by substitution of sucrose with choline chloride. From these results, it may be concluded that the depolarization induced by low external K+ in canine Purkinje fibers is due to the nonspecific increase of membrane permeability to external cations and/or combinations with decreased K+ conductance.

Keyword

Canine Purkinges fiber; low external K+; membrane depolarization

MeSH Terms

Animal
Dogs
Guinea Pigs
Heart/physiology*
Membrane Potentials/drug effects*
Papillary Muscles/physiology
Potassium/pharmacology*
Purkinje Fibers/physiology
Rest
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr