J Korean Assoc Oral Maxillofac Surg.  2025 Apr;51(2):87-94. 10.5125/jkaoms.2025.51.2.87.

Volumetric change after maxillary sinus floor elevation using absorbable collagen sponge: a retrospective cohort study

Affiliations
  • 1Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, Korea
  • 2Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea

Abstract


Objectives
To evaluate changes in bone volume induced by absorbable collagen sponge (ACS) use during maxillary sinus floor elevation and to identify associated factors.
Patients and Methods
After elevating the sinus membrane through a crestal approach (CA) or lateral approach (LA), ACS (AteloPlug; Bioland) was inserted, and dental implants were placed simultaneously. Changes in bone volume at 12 months were evaluated by three-dimensional (3D) analyses of cone-beam computed tomography images. Factors including age, sex, smoking status, span, number of ACSs, and perforation were assessed for associations with changes in sinus bone volume using uni- and multivariable analyses based on the generalized estimating equation.
Results
Medical records of 108 patients were collected and retrospectively evaluated, with 135 regions of interest defined (CA, 45; LA, 90). The changes in bone volume at the sinus floor were 159.38±134.52 mm 3 and 486.83±253.14 mm 3 in the CA and LA groups, respectively. Bone volume changes in the CA group were significantly affected by the number of ACSs (P<0.001) and perforation of the sinus membrane (P<0.001), whereas bone volume changes in the LA group were significantly affected by the number of ACSs (P=0.001).
Conclusion
Use of ACS for maxillary sinus elevation resulted in detection of new bone formation in 3D analysis. Clinicians can ensure stable amounts of bone formation by inserting an adequate number of ACSs.

Keyword

Implant; Maxillary sinus; Crestal approach; Lateral approach; Bone volume

Figure

  • Fig. 1 Sinus floor elevation using absorbable collagen sponge (ACS) through the lateral approach (A, B) and crestal approach (C, D). A. Elevation of the sinus membrane after window opening. B. Insertion of ACSs into the sinus cavity with simultaneous implantation. C. Insertion of ACSs into the sinus cavity after elevation of the sinus floor using an osteotome. D. Simultaneous implantation.

  • Fig. 2 Three-dimensional (3D) bone volume analysis of sinus floor elevation using absorbable collagen sponge. A. Reconstruction of Digital Imaging and Communication in Medicine data as a 3D virtual model. B. Preoperative image. C. Image at 12 months postoperatively. D. Superimposed images and region of interest (ROI). E. Volumetric measurement of ROI.

  • Fig. 3 Relationship between bone volume changes and the number of ACSs. Results of univariable analysis indicated that bone volume changes were significantly correlated with the number of ACSs (CA, estimate=180.266 mm3, P=0.005; LA, estimate=137.905 mm3, P=0.001). As the number of ACSs increased, bone volume changes also increased, showing a linear relationship in both the CA and LA groups. (ACS: absorbable collagen sponge, CA: crestal approach, LA: lateral approach)


Reference

References

1. Lundgren S, Andersson S, Gualini F, Sennerby L. 2004; Bone reformation with sinus membrane elevation: a new surgical technique for maxillary sinus floor augmentation. Clin Implant Dent Relat Res. 6:165–73. https://doi.org/10.1111/j.1708-8208.2004.tb00217.x. DOI: 10.1111/j.1708-8208.2004.tb00217.x. PMID: 15726851.
Article
2. Rong Q, Li X, Chen SL, Zhu SX, Huang DY. 2015; Effect of the Schneiderian membrane on the formation of bone after lifting the floor of the maxillary sinus: an experimental study in dogs. Br J Oral Maxillofac Surg. 53:607–12. https://doi.org/10.1016/j.bjoms.2015.02.010. DOI: 10.1016/j.bjoms.2015.02.010. PMID: 26025764.
Article
3. Scala A, Botticelli D, Faeda RS, Garcia Rangel I Jr, Américo de Oliveira J, Lang NP. 2012; Lack of influence of the Schneiderian membrane in forming new bone apical to implants simultaneously installed with sinus floor elevation: an experimental study in monkeys. Clin Oral Implants Res. 23:175–81. https://doi.org/10.1111/j.1600-0501.2011.02227.x. DOI: 10.1111/j.1600-0501.2011.02227.x. PMID: 21668505.
Article
4. Volpe S, Di Girolamo M, Pagliani P, Zicari S, Sennerby L. 2022; Osteotome-induced blood clot and subsequent bone formation with the use of collagen sponge for integration of single dental implants into the atrophied posterior maxilla: a retrospective follow-up of 36 implants after 5 to 13 years. Int J Dent. 2022:6594279. https://doi.org/10.1155/2022/6594279. DOI: 10.1155/2022/6594279. PMID: 35035486. PMCID: PMC8754613.
Article
5. Menassa G, Kassir AR, Landi L, Naaman NBA, Chakar C. 2021; Implant placement with sinus floor elevation via the lateral approach using only absorbable collagen sponge: 12-month post-loading radiographical outcomes and implant survival rate. Oral Maxillofac Surg. 25:231–6. https://doi.org/10.1007/s10006-020-00908-w. DOI: 10.1007/s10006-020-00908-w. PMID: 32964339.
Article
6. Berberi A, Nader N, Bou Assaf R, Fayyad-Kazan H, Khairalah S, Moukarzel N. 2017; Sinus floor augmentation with ambient blood and an absorbable collagen sponge: a prospective pilot clinical study. Implant Dent. 26:674–81. https://doi.org/10.1097/id.0000000000000631. DOI: 10.1097/ID.0000000000000631. PMID: 28696960.
Article
7. Choi Y, Yun JH, Kim CS, Choi SH, Chai JK, Jung UW. 2012; Sinus augmentation using absorbable collagen sponge loaded with Escherichia coli-expressed recombinant human bone morphogenetic protein 2 in a standardized rabbit sinus model: a radiographic and histologic analysis. Clin Oral Implants Res. 23:682–9. https://doi.org/10.1111/j.1600-0501.2011.02222.x. DOI: 10.1111/j.1600-0501.2011.02222.x. PMID: 21631596.
Article
8. Cosola S, Di Dino B, Traini T, Kim YS, Park YM, Marconcini S, et al. 2022; Radiographic and histomorphologic evaluation of the maxillary bone after crestal mini sinus lift using absorbable collagen-retrospective evaluation. Dent J (Basel). 10:58. https://doi.org/10.3390/dj10040058. DOI: 10.3390/dj10040058. PMID: 35448052. PMCID: PMC9024729.
Article
9. Boyne PJ, Marx RE, Nevins M, Triplett G, Lazaro E, Lilly LC, et al. 1997; A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int J Periodontics Restorative Dent. 17:11–25.
10. Boyne PJ, Lilly LC, Marx RE, Moy PK, Nevins M, Spagnoli DB, et al. 2005; De novo bone induction by recombinant human bone morphogenetic protein-2 (rhBMP-2) in maxillary sinus floor augmentation. J Oral Maxillofac Surg. 63:1693–707. https://doi.org/10.1016/j.joms.2005.08.018. DOI: 10.1016/j.joms.2005.08.018. PMID: 16297689.
Article
11. Triplett RG, Nevins M, Marx RE, Spagnoli DB, Oates TW, Moy PK, et al. 2009; Sep. Pivotal, randomized, parallel evaluation of recombinant human bone morphogenetic protein-2/absorbable collagen sponge and autogenous bone graft for maxillary sinus floor augmentation. J Oral Maxillofac Surg. 67(9):1947–60. DOI: 10.1016/j.joms.2009.04.085. PMID: 19686934.
Article
12. Lee J, Susin C, Rodriguez NA, de Stefano J, Prasad HS, Buxton AN, et al. 2013; Sinus augmentation using rhBMP-2/ACS in a mini-pig model: relative efficacy of autogenous fresh particulate iliac bone grafts. Clin Oral Implants Res. 24:497–504. https://doi.org/10.1111/j.1600-0501.2011.02419.x. DOI: 10.1111/j.1600-0501.2011.02419.x. PMID: 22276816.
Article
13. Kao DW, Kubota A, Nevins M, Fiorellini JP. 2012; The negative effect of combining rhBMP-2 and Bio-Oss on bone formation for maxillary sinus augmentation. Int J Periodontics Restorative Dent. 32:61–7.
14. Hirata A, Ueno T, Moy PK. 2017; Newly formed bone induced by recombinant human bone morphogenetic protein-2: a histological observation. Implant Dent. 26:173–7. https://doi.org/10.1097/id.0000000000000564. DOI: 10.1097/ID.0000000000000564. PMID: 28207598.
Article
15. Caneva M, Lang NP, Garcia Rangel IJ, Ferreira S, Caneva M, De Santis E, et al. 2017; Sinus mucosa elevation using Bio-Oss® or Gingistat® collagen sponge: an experimental study in rabbits. Clin Oral Implants Res. 28:e21–30. https://doi.org/10.1111/clr.12850. DOI: 10.1111/clr.12850.
Article
16. Summers RB. 1994; A new concept in maxillary implant surgery: the osteotome technique. Compendium. 15:152154–6. 158 passim.
17. Boyne PJ, James RA. 1980; Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg. 38:613–6.
18. Shimoji S, Miyaji H, Sugaya T, Tsuji H, Hongo T, Nakatsuka M, et al. 2009; Bone perforation and placement of collagen sponge facilitate bone augmentation. J Periodontol. 80:505–11. https://doi.org/10.1902/jop.2009.080511. DOI: 10.1902/jop.2009.080511. PMID: 19254135.
Article
19. Ahn JJ, Cho SA, Byrne G, Kim JH, Shin HI. 2011; New bone formation following sinus membrane elevation without bone grafting: histologic findings in humans. Int J Oral Maxillofac Implants. 26:83–90.
20. Lee BA, Lee SB, Kim YT. 2021; Crestal approach for the repair of the Schneiderian membrane perforated during transalveolar sinus elevation. J Osseointegr. 13:150–5. https://doi.org/10.23805/JO.2021.13.03.8.
Article
21. Pjetursson BE, Tan WC, Zwahlen M, Lang NP. 2008; A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation. J Clin Periodontol. 35(8 Suppl):216–40. https://doi.org/10.1111/j.1600-051x.2008.01272.x. DOI: 10.1111/j.1600-051X.2008.01272.x. PMID: 18724852.
Article
22. Tan WC, Lang NP, Zwahlen M, Pjetursson BE. 2008; A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation. Part II: transalveolar technique. J Clin Periodontol. 35(8 Suppl):241–54. https://doi.org/10.1111/j.1600-051x.2008.01273.x. DOI: 10.1111/j.1600-051X.2008.01273.x. PMID: 18724853.
Article
23. Reiser GM, Rabinovitz Z, Bruno J, Damoulis PD, Griffin TJ. 2001; Evaluation of maxillary sinus membrane response following elevation with the crestal osteotome technique in human cadavers. Int J Oral Maxillofac Implants. 16:833–40.
24. Proussaefs P, Lozada J, Kim J. 2003; Effects of sealing the perforated sinus membrane with a resorbable collagen membrane: a pilot study in humans. J Oral Implantol. 29:235–41. https://doi.org/10.1563/1548-1336(2003)029%3C0235:eostps%3E2.3.co;2. DOI: 10.1563/1548-1336(2003)029<0235:EOSTPS>2.3.CO;2. PMID: 14620686.
Article
25. Hernández-Alfaro F, Torradeflot MM, Marti C. 2008; Prevalence and management of Schneiderian membrane perforations during sinus-lift procedures. Clin Oral Implants Res. 19:91–8. https://doi.org/10.1111/j.1600-0501.2007.01372.x. DOI: 10.1111/j.1600-0501.2007.01372.x. PMID: 17961185.
Article
Full Text Links
  • JKAOMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr