2. Lucas J, van Doorn P, Hegedus E, Lewis J, van der Windt D. A systematic review of the global prevalence and incidence of
shoulder pain. BMC Musculoskelet Disord. 2022; 23(1):1073. DOI:
10.1186/s12891-022-05973-8. PMID:
36476476. PMCID:
PMC9730650.
3. Hodgetts CJ, Leboeuf-Yde C, Beynon A, Walker BF. Shoulder pain prevalence by age and within occupational groups: a
systematic review. Arch Physiother. 2021; 11(1):24. DOI:
10.1186/s40945-021-00119-w. PMID:
34736540. PMCID:
PMC8567712.
4. Kim YT, Kim TY, Lee JB, Hwang JT. Glenohumeral versus subacromial steroid injections for
impingement syndrome with mild stiffness: a randomized controlled
trial. Clin Shoulder Elb. 2023; 26(4):390–396. DOI:
10.5397/cise.2023.00346. PMID:
37798841. PMCID:
PMC10698124.
Article
5. Mardani-Kivi M, Hashemi-Motlagh K, Darabipour Z. Arthroscopic release in adhesive capsulitis of the shoulder: a
retrospective study with 2 to 6 years of follow-up. Clin Shoulder Elb. 2021; 24(3):172–177. DOI:
10.5397/cise.2021.00311. PMID:
34488298. PMCID:
PMC8423526.
Article
6. Hones KM, Hao KA, Buchanan TR, Trammell AP, Wright JO, Wright TW, et al. Does preoperative forward elevation weakness affect clinical
outcomes in anatomic or reverse total shoulder arthroplasty patients with
glenohumeral osteoarthritis and intact rotator cuff? Clin Shoulder Elb. 2024; 27(3):316–326. DOI:
10.5397/cise.2024.00262. PMID:
39138944. PMCID:
PMC11393438.
Article
7. Rhee SM, Youn SM, Kim CH, Chang GW, Kim SY, Ham HJ, et al. Rotator cuff repairs with all-suture tape anchors: no difference
in outcomes between with or without all-suture tape anchors. Knee Surg Sports Traumatol Arthrosc. 2023; 31(9):4060–4067. DOI:
10.1007/s00167-023-07454-4. PMID:
37226010.
Article
8. Ko YW, Park JH, Youn SM, Rhee YG, Rhee SM. Effects of comorbidities on the outcomes of manipulation under
anesthesia for primary stiff shoulder. J Shoulder Elbow Surg. 2021; 30(8):E482–E492. DOI:
10.1016/j.jse.2020.11.007. PMID:
33359399.
9. Malavolta EA, Assunção JH, Gracitelli MEC, Yen TK, Bordalo-Rodrigues M, Ferreira Neto AA. Accuracy of magnetic resonance imaging (MRI) for subscapularis
tear: a systematic review and meta-analysis of diagnostic
studies. Arch Orthop Trauma Surg. 2019; 139(5):659–667. DOI:
10.1007/s00402-018-3095-6. PMID:
30539284.
Article
10. Elrahim RMA, Embaby EA, Ali MF, Kamel RM. Inter-rater and intra-rater reliability of Kinovea software for
measurement of shoulder range of motion. Bull Fac Phys Ther. 2016; 21(2):80–87. DOI:
10.4103/1110-6611.196778.
Article
11. Grauhan NF, Niehues SM, Gaudin RA, Keller S, Vahldiek JL, Adams LC, et al. Deep learning for accurately recognizing common causes of
shoulder pain on radiographs. Skeletal Radiol. 2022; 51(2):355–362. DOI:
10.1007/s00256-021-03740-9. PMID:
33611622. PMCID:
PMC8692302.
Article
12. Ro K, Kim JY, Park H, Cho BH, Kim IY, Shim SB, et al. Deep-learning framework and computer assisted fatty infiltration
analysis for the supraspinatus muscle in MRI. Sci Rep. 2021; 11(1):15065. DOI:
10.1038/s41598-021-93026-w. PMID:
34301978. PMCID:
PMC8302634.
13. Shariatnia MM, Ramazanian T, Sanchez-Sotelo J, Maradit Kremers H. Deep learning model for measurement of shoulder critical angle
and acromion index on shoulder radiographs. JSES Rev Rep Tech. 2022; 2(3):297–301. DOI:
10.1016/j.xrrt.2022.03.002. PMID:
37588867. PMCID:
PMC10426517.
Article
14. Taghizadeh E, Truffer O, Becce F, Eminian S, Gidoin S, Terrier A, et al. Deep learning for the rapid automatic quantification and
characterization of rotator cuff muscle degeneration from shoulder CT
datasets. Eur Radiol. 2021; 31(1):181–190. DOI:
10.1007/s00330-020-07070-7. PMID:
32696257. PMCID:
PMC7755645.
Article
15. Alzubaidi L, Al-Dulaimi K, Salhi A, Alammar Z, Fadhel MA, Albahri AS, et al. Comprehensive review of deep learning in orthopaedics:
applications, challenges, trustworthiness, and fusion. Artif Intell Med. 2024; 155:102935. DOI:
10.1016/j.artmed.2024.102935. PMID:
39079201.
16. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures: pre- and
postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994; 304:78–83. DOI:
10.1097/00003086-199407000-00014.
17. Jeong JY, Chung PK, Lee SM, Yoo JC. Supraspinatus muscle occupation ratio predicts rotator cuff
reparability. J Shoulder Elbow Surg. 2017; 26(6):960–966. DOI:
10.1016/j.jse.2016.11.001. PMID:
28153683.
Article
18. Lee SH, Lee J, Oh KS, Yoon JP, Seo A, Jeong Y, et al. Automated 3-dimensional MRI segmentation for the posterosuperior
rotator cuff tear lesion using deep learning algorithm. PLoS One. 2023; 18(5):e0284111. DOI:
10.1371/journal.pone.0284111. PMID:
37200275. PMCID:
PMC10194959.
19. Hashimoto E, Maki S, Ochiai N, Ise S, Inagaki K, Hiraoka Y, et al. Automated detection and classification of the rotator cuff tear
on plain shoulder radiograph using deep learning. J Shoulder Elbow Surg. 2024; 33(8):1733–1739. DOI:
10.1016/j.jse.2023.12.009. PMID:
38311106.
Article
20. Magnéli M, Ling P, Gislén J, Fagrell J, Demir Y, Arverud ED, et al. Deep learning classification of shoulder fractures on plain
radiographs of the humerus, scapula and clavicle. PLoS One. 2023; 18(8):e0289808. DOI:
10.1371/journal.pone.0289808. PMID:
37647274. PMCID:
PMC10468075.
21. Li G, Wu N, Zhang J, Song Y, Ye T, Zhang Y, et al. Proximal humeral bone density assessment and prediction analysis
using machine learning techniques: An innovative approach in medical
research. Heliyon. 2024; 10(15):e35451. DOI:
10.1016/j.heliyon.2024.e35451. PMID:
39166094. PMCID:
PMC11334883.
22. Tingart MJ, Zurakowski D, Warner JJP, Apreleva M, von Stechow D. The cortical thickness of the proximal humeral diaphysis predicts
bone mineral density of the proximal humerus. J Bone Joint Surg Br. 2003; 85(4):611–617. DOI:
10.1302/0301-620X.85B4.12843. PMID:
12793573.
23. van den Hoorn W, Lavaill M, Cutbush K, Gupta A, Kerr G. Comparison of shoulder range of motion quantified with mobile
phone video-based skeletal tracking and 3D motion capture: preliminary
study. Sensors. 2024; 24(2):534. DOI:
10.3390/s24020534. PMID:
38257626. PMCID:
PMC10818695.
Article
24. Pereira B, Cunha B, Viana P, Lopes M, Melo ASC, Sousa ASP. A machine learning app for monitoring physical therapy at
home. Sensors. 2024; 24(1):158. DOI:
10.3390/s24010158. PMID:
38203019. PMCID:
PMC10781250.
Article
25. Sun K, Xiao B, Liu D, Wang J. Deep high-tesolution representation learning for human pose estimation.
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2019. Jun. 15-20. Long Beach, CA. Piscataway (NJ): IEEE;2019. p. p. 5693–5703. DOI:
10.1109/CVPR.2019.00584.
26. Takigami S, Inui A, Mifune Y, Nishimoto H, Yamaura K, Kato T, et al. Estimation of shoulder joint rotation angle using tablet device
and pose estimation artificial intelligence model. Sensors. 2024; 24(9):2912. DOI:
10.3390/s24092912. PMID:
38733018. PMCID:
PMC11086391.
Article
27. Ramkumar PN, Haeberle HS, Navarro SM, Sultan AA, Mont MA, Ricchetti ET, et al. Mobile technology and telemedicine for shoulder range of motion:
validation of a motion-based machine-learning software development
kit. J Shoulder Elbow Surg. 2018; 27(7):1198–1204. DOI:
10.1016/j.jse.2018.01.013. PMID:
29525490.
Article