Ann Clin Microbiol.  2024 Dec;27(4):221-230. 10.5145/ACM.2024.27.4.2.

Fungal identification based on the polyphasic approach: a clinical practice guideline

Affiliations
  • 1Department of Laboratory Medicine, International St. Mary`s Hospital, College of Medicine, Catholic Kwandong University, Incheon, Korea

Abstract

Taxonomy includes classification, nomenclature, and identification. Identification assigns unknown fungi to species based on their strain characteristics. Traditionally, fungal taxonomy relied on morphological, physiological, and biochemical traits. However, advancements in molecular phylogeny, especially multilocus sequence analysis (MLSA), have revolutionized fungal taxonomy. MLSA combines phylogenetic and genetic approaches. Although effective, MLSA may not fully reflect biodiversity or distinguish between closely related species. Polyphasic taxonomy integrates genotypic, phylogenetic, chemotaxonomic, and phenotypic data into a consensus classification system. Polyphasic taxonomy was first applied to Rhodotorula glutinis in 2001 and is now widely accepted. Phenotypic traits, such as protein profiles and chemotaxonomic markers, analyzed using techniques such as matrix-assisted laser desorption ionization-time of flight mass spectrometry, are effective for yeast and filamentous fungi. Genotypic data from DNA/RNA sequencing, compared with data from databases such as Index Fungorum and MycoBank, aids species identification and synonym verification. Despite its practicality, the polyphasic approach lacks strict guidelines, resulting in varied interpretations.

Keyword

Fungi; Matrix-assisted laser desorption-ionization mass spectrometry; Multilocus sequence analysis; Phenotype; Phylogeny; Taxonomy

Reference

1. Carroll KC, Pfaller MA et al. eds. Manual of Clinical Microbiology. 13th ed. American Society for Microbiology; 2023: 2275-2282.
2. Persing DH, Tenover FC et al. eds. Molecular microbiology. 3rd ed. American Society for Microbiology; 2016: 489-500.
3. Colwell R. Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 1970;104:410-33.
4. Gadanho M, Sampaio J, Spencer-Martins I. Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: R. azoricum sp. nov. Can J Microbiol 2001;47:213-21.
5. Gannibal PB. Polyphasic approach to fungal taxonomy. Biol Bull Rev 2022;12:18-28.
6. Title PM. eds. Bailey & Scott's Diagnostic Microbiology, 15th ed. Elsevier; 2022:791-813.
7. Frisvad JC and Samson RA. Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 2004;49:1-174.
8. Frisvad JC, Larsen TO, De Vries R, Meijer M, Houbraken J, Cabañes F, et al. Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins. Stud Mycol 2007;59:31-7.
9. Pluta M. Nomarski's DIC microscopy: a review. Phase contrast and differential interference contrast imaging techniques and applications 1994;1846:10-25.
10. Smedsgaard J and Nielsen J. Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 2005;56:273-86.
11. Frisvad JC. Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front Microbiol 2015;5:773.
12. Saleh D, Milazzo J, Adreit H, Tharreau D, Fournier E. Asexual reproduction induces a rapid and permanent loss of sexual reproduction capacity in the rice fungal pathogen Magnaporthe oryzae: results of in vitro experimental evolution assays. BMC Evol Biol 2012;12:1-16.
13. Calderaro A and Chezzi C. MALDI-TOF MS: A Reliable Tool in the Real Life of the Clinical Microbiology Laboratory. Microorganisms 2024;12:322.
14. Robert M-G, Cornet M, Hennebique A, Rasamoelina T, Caspar Y, Pondérand L, et al. MALDITOF MS in a medical mycology laboratory: on stage and backstage. Microorganisms 2021;9:1283.
15. Sarvestani HK, Ramandi A, Getso MI, Razavyoon T, Javidnia J, Golrizi MB, et al. Mass spectrometry in research laboratories and clinical diagnostic: a new era in medical mycology. Braz J Microbiol 2022;53:689-707.
16. Diongue K, Kébé O, Faye M, Samb D, Diallo M, Ndiaye M, et al. MALDI-TOF MS identification of Malassezia species isolated from patients with pityriasis versicolor at the Seafarers’ Medical Service in Dakar, Senegal. J Mycol Med 2018;28:590-3.
17. Fries BC, Goldman DL, Cherniak R, Ju R, Casadevall A. Phenotypic switching in Cryptococcus neoformans results in changes in cellular morphology and glucuronoxylomannan structure. Infect Immun 1999;67:6076-83.
18. Fries B, Lee S, Kennan R, Zhao W, Casadevall A, Goldman D. Phenotypic switching of Cryptococcus neoformans can produce variants that elicit increased intracranial pressure in a rat model of cryptococcal meningoencephalitis. Infect Immun 2005;73:1779-87.
19. Gautam AK, Verma RK, Avasthi S, Sushma, Bohra Y, Devadatha B, et al. Current insight into traditional and modern methods in fungal diversity estimates. J Fungi 2022;8:226.
20. Clinical Laboratory Standards Institute (CLSI). 2018. Interpretive criteria for identification of bacteria and fungi by DNA target sequencing; MM18-A2 approved guideline. CLSI, Wayne, PA.
21. Lee H, Park JH, Oh J, Cho S, Koo J, Park IC, et al. Evaluation of a new matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system for the identification of yeast isolation. J Clin Lab Anal 2019;33:e22685.
22. de Almeida Jr JN, Favero Gimenes VM, Francisco EC, Machado Siqueira LP, Gonçalves de Almeida RK, Guitard J, et al. Evaluating and improving Vitek MS for identification of clinically relevant species of Trichosporon and the closely related genera Cutaneotrichosporon and Apiotrichum. J Clin Microbiol 2017;55:2439-44.
23. Zvezdanova ME, Arroyo MJ, Méndez G, Guinea J, Mancera L, Muñoz P, et al. Implementation of MALDI-TOF mass spectrometry and peak analysis: application to the discrimination of Cryptococcus neoformans species complex and their interspecies hybrids. J Fungi 2020;6:330.
24. Siqueira LPM, Gimenes VMF, de Freitas RS, Melhem MdSC, Bonfietti LX, da Silva Jr AR, et al. Evaluation of Vitek MS for Differentiation of Cryptococcus neoformans and Cryptococcus gattii Genotypes. J Clin Microbiol 2019;57:10.1128/jcm. 01282-18.
25. Buchan BW and Ledeboer NA. Advances in identification of clinical yeast isolates by use of matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 2013;51:1359-66.
26. Honnavar P, Ghosh A, Paul S, Shankarnarayan S, Singh P, Dogra S, et al. Identification of Malassezia species by MALDI-TOF MS after expansion of database. Diagn Microbiol Infect Dis 2018;92:118-23.
27. Kolecka A, Khayhan K, Arabatzis M, Velegraki A, Kostrzewa M, Andersson A, et al. Efficient identification of Malassezia yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Br J Dermatol 2014;170:332-41.
28. Vidal-Acuña MR, Ruiz-Pérez de Pipaón M, Torres-Sánchez MJ, Aznar J. Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Med Mycol 2018;56:838-46.
29. Li Y, Wang H, Zhao Y-P, Xu Y-C, Hsueh P-R. Evaluation of the Bruker Biotyper matrixassisted laser desorption/ionization time-of-flight mass spectrometry system for identification of Aspergillus species directly from growth on solid agar media. Frontiers in Front Microbiol 2017;8:1209.
30. Lee H, Oh J, Sung G-H, Koo J, Lee M-H, Lee HJ, et al. Multilaboratory evaluation of the MALDI-TOF mass spectrometry system, MicroIDSys elite, for the identification of medically important filamentous fungi. Mycopathologia 2021;186:15-26.
31. Lee H, Koo J, Oh J, Cho S-I, Lee H, Lee HJ, et al. Clinical Evaluation of VITEK MS PRIME with PICKME Pen for Bacteria and Yeasts, and RUO database for Filamentous Fungi. Microorganisms 2024;12:964.
32. Hedayati MT, Taghizadeh-Armaki M, Zarrinfar H, Hoseinnejad A, Ansari S, Abastabar M, et al. Discrimination of aspergillus flavus from Aspergillus oryzae by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry. Mycoses 2019;62:1182-8.
33. Triest D, Stubbe D, De Cremer K, Piérard D, Normand A-C, Piarroux R, et al. Use of matrixassisted laser desorption ionization–time of flight mass spectrometry for identification of molds of the Fusarium genus. J Clin Microbiol 2015;53:465-76.
34. Shao J, Wan Z, Li R, Yu J. Species Identification and Delineation of Pathogenic Mucorales by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol 2018;56.
35. Hung C-Y, Seshan KR, Yu J-J, Schaller R, Xue J, Basrur V, et al. A metalloproteinase of Coccidioides posadasii contributes to evasion of host detection. Infect Immun 2005;73:6689703.
36. Keely SP, Cushion MT, Stringer JR. Diversity at the locus associated with transcription of a variable surface antigen of Pneumocystis carinii as an index of population structure and dynamics in infected rats. Infect Immun 2003;71:47-60.
37. Shinohara N, Woo C, Yamamoto N, Hashimoto K, Yoshida-Ohuchi H, Kawakami Y. Comparison of DNA sequencing and morphological identification techniques to characterize environmental fungal communities. Sci Rep 2021;11:2633.
38. Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH. Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 2010;55:42138.
39. Tsang C-C, Teng JL, Lau SK, Woo PC. Rapid genomic diagnosis of fungal infections in the age of next-generation sequencing. J Fungi 2021;7:636.
40. Berbee ML. Loculoascomycete origins and evolution of filamentous ascomycete morphology based on 18S rRNA gene sequence data. Mol Biol Evol 1996;13:462-70.
41. Taylor JW and Fisher MC. Fungal multilocus sequence typing—it’s not just for bacteria. Mol Biol Evol 2003;6:351-6.
42. Hibbett D, Abarenkov K, Kõljalg U, Öpik M, Chai B, Cole J, et al. Sequence-based classification and identification of Fungi. Mycologia 2016;108:1049-68.
43. Hilário S, Gonçalves MF, Alves A. Using genealogical concordance and coalescent-based species delimitation to assess species boundaries in the Diaporthe eres complex. J Fungi 2021;7:507.
Full Text Links
  • ACM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr