1. Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2017; 14:591–602. PMID:
28492288.
Article
2. van Riet EE, Hoes AW, Wagenaar KP, Limburg A, Landman MA, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016; 18:242–252. PMID:
26727047.
Article
3. Shah KS, Xu H, Matsouaka RA, et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol. 2017; 70:2476–2486. PMID:
29141781.
4. McDonagh TA, Metra M, Adamo M, et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2023; 44:3627–3639. PMID:
37622666.
5. Bozkurt B, Coats AJ, Tsutsui H, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail. 2021; 27:387–413.
Article
6. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42:3599–3726. PMID:
34447992.
Article
7. Steinmann E, Brunner-La Rocca HP, Maeder MT, Kaufmann BA, Pfisterer M, Rickenbacher P. Is the clinical presentation of chronic heart failure different in elderly versus younger patients and those with preserved versus reduced ejection fraction? Eur J Intern Med. 2018; 57:61–69. PMID:
29908708.
Article
8. Steinberg BA, Zhao X, Heidenreich PA, et al. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation. 2012; 126:65–75. PMID:
22615345.
Article
9. Persson H, Lonn E, Edner M, et al. Diastolic dysfunction in heart failure with preserved systolic function: need for objective evidence:results from the CHARM Echocardiographic Substudy-CHARMES. J Am Coll Cardiol. 2007; 49:687–694. PMID:
17291934.
Article
10. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016; 29:277–314. PMID:
27037982.
Article
11. Smiseth OA, Morris DA, Cardim N, et al. Multimodality imaging in patients with heart failure and preserved ejection fraction: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2022; 23:e34–e61. PMID:
34729586.
Article
12. Saito Y, Omae Y, Harada T, et al. Exercise stress echocardiography-based phenotyping of heart failure with preserved ejection fraction. J Am Soc Echocardiogr. 2024; 37:759–768. PMID:
38754750.
Article
13. Savji N, Meijers WC, Bartz TM, et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018; 6:701–709. PMID:
30007554.
Article
14. Shah AM, Shah SJ, Anand IS, et al. Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. Circ Heart Fail. 2014; 7:104–115. PMID:
24249049.
Article
15. Borlaug BA. The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2014; 11:507–515. PMID:
24958077.
Article
16. Samson R, Jaiswal A, Ennezat PV, Cassidy M, Le Jemtel TH. Clinical phenotypes in heart failure with preserved ejection fraction. J Am Heart Assoc. 2016; 5:e002477. PMID:
26811159.
Article
17. Brunner-La Rocca HP, Sanders-van Wijk S. Natriuretic peptides in chronic heart failure. Card Fail Rev. 2019; 5:44–49. PMID:
30847245.
Article
18. Remmelzwaal S, van Ballegooijen AJ, Schoonmade LJ, et al. Natriuretic peptides for the detection of diastolic dysfunction and heart failure with preserved ejection fraction-a systematic review and meta-analysis. BMC Med. 2020; 18:290. PMID:
33121502.
19. Moliner P, Lupón J, Barallat J, et al. Bio-profiling and bio-prognostication of chronic heart failure with mid-range ejection fraction. Int J Cardiol. 2018; 257:188–192. PMID:
29415801.
Article
20. Mueller C, McDonald K, de Boer RA, et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail. 2019; 21:715–731. PMID:
31222929.
Article
21. Obokata M, Reddy YN, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017; 136:6–19. PMID:
28381470.
Article
22. Buckley LF, Canada JM, Del Buono MG, et al. Low NT-proBNP levels in overweight and obese patients do not rule out a diagnosis of heart failure with preserved ejection fraction. ESC Heart Fail. 2018; 5:372–378.
23. Pieske B, Tschöpe C, de Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019; 40:3297–3317. PMID:
31504452.
Article
24. Woolley RJ, Ceelen D, Ouwerkerk W, et al. Machine learning based on biomarker profiles identifies distinct subgroups of heart failure with preserved ejection fraction. Eur J Heart Fail. 2021; 23:983–991. PMID:
33651430.
Article
25. van Veldhuisen DJ, Linssen GC, Jaarsma T, et al. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol. 2013; 61:1498–1506. PMID:
23500300.
Article
26. Buffle E, Kramarz J, Elazar E, et al. Added value of pulmonary venous flow Doppler assessment in patients with preserved ejection fraction and its contribution to the diastolic grading paradigm. Eur Heart J Cardiovasc Imaging. 2015; 16:1191–1197. PMID:
26034092.
27. Pellicori P, Platz E, Dauw J, et al. Ultrasound imaging of congestion in heart failure: examinations beyond the heart. Eur J Heart Fail. 2021; 23:703–712. PMID:
33118672.
Article
28. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015; 16:233–270. PMID:
25712077.
Article
29. Verma A, Meris A, Skali H, et al. Prognostic implications of left ventricular mass and geometry following myocardial infarction: the VALIANT (VALsartan In Acute myocardial iNfarcTion) Echocardiographic Study. JACC Cardiovasc Imaging. 2008; 1:582–591. PMID:
19356485.
Article
30. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991; 114:345–352. PMID:
1825164.
31. Reddy YN, Carter RE, Obokata M, Redfield MM, Borlaug BA. A Simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation. 2018; 138:861–870. PMID:
29792299.
Article
32. Shah AM, Cikes M, Prasad N, et al. Echocardiographic features of patients with heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2019; 74:2858–2873. PMID:
31806129.
Article
33. Zile MR, Gottdiener JS, Hetzel SJ, et al. Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation. 2011; 124:2491–2501. PMID:
22064591.
Article
34. González-López E, Gallego-Delgado M, Guzzo-Merello G, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J. 2015; 36:2585–2594. PMID:
26224076.
35. Kanagala P, Cheng AS, Singh A, et al. Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in heart failure with preserved ejection fraction - implications for clinical trials. J Cardiovasc Magn Reson. 2018; 20:4. PMID:
29321034.
Article
36. Kraigher-Krainer E, Shah AM, Gupta DK, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2014; 63:447–456. PMID:
24184245.
Article
37. Morris DA, Ma XX, Belyavskiy E, et al. Left ventricular longitudinal systolic function analysed by 2D speckle-tracking echocardiography in heart failure with preserved ejection fraction: a meta-analysis. Open Heart. 2017; 4:e000630. PMID:
29018535.
Article
38. Wehner GJ, Jing L, Haggerty CM, et al. Routinely reported ejection fraction and mortality in clinical practice: where does the nadir of risk lie? Eur Heart J. 2020; 41:1249–1257. PMID:
31386109.
39. Rosch S, Kresoja KP, Besler C, et al. Characteristics of heart failure with preserved ejection fraction across the range of left ventricular ejection fraction. Circulation. 2022; 146:506–518. PMID:
35862208.
40. Stokke TM, Hasselberg NE, Smedsrud MK, et al. Geometry as a confounder when assessing ventricular systolic function: comparison between ejection fraction and strain. J Am Coll Cardiol. 2017; 70:942–954. PMID:
28818204.
41. Park JJ, Park JB, Park JH, Cho GY. Global longitudinal strain to predict mortality in patients with acute heart failure. J Am Coll Cardiol. 2018; 71:1947–1957. PMID:
29724346.
Article
42. Shah AM, Claggett B, Sweitzer NK, et al. Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation. 2015; 132:402–414. PMID:
26130119.
43. Brann A, Miller J, Eshraghian E, Park JJ, Greenberg B. Global longitudinal strain predicts clinical outcomes in patients with heart failure with preserved ejection fraction. Eur J Heart Fail. 2023; 25:1755–1765. PMID:
37369633.
44. Paolisso P, Gallinoro E, Mileva N, et al. Performance of non-invasive myocardial work to predict the first hospitalization for de novo heart failure with preserved ejection fraction. ESC Heart Fail. 2022; 9:373–384. PMID:
34821061.
Article
45. D’Andrea A, Ilardi F, D’Ascenzi F, et al. Impaired myocardial work efficiency in heart failure with preserved ejection fraction. Eur Heart J Cardiovasc Imaging. 2021; 22:1312–1320. PMID:
34410362.
Article
46. Guichard JB, Nattel S. Atrial cardiomyopathy: a useful notion in cardiac disease management or a passing fad? J Am Coll Cardiol. 2017; 70:756–765. PMID:
28774383.
47. Obokata M, Borlaug BA. Left atrial dysfunction: the next key target in heart failure with preserved ejection fraction. Eur J Heart Fail. 2019; 21:506–508. PMID:
30734449.
Article
48. Rossi A, Cicoira M, Florea VG, et al. Chronic heart failure with preserved left ventricular ejection fraction: diagnostic and prognostic value of left atrial size. Int J Cardiol. 2006; 110:386–392. PMID:
16325283.
Article
49. Donal E, Lund LH, Oger E, et al. Importance of combined left atrial size and estimated pulmonary pressure for clinical outcome in patients presenting with heart failure with preserved ejection fraction. Eur Heart J Cardiovasc Imaging. 2017; 18:629–635. PMID:
28329385.
Article
50. Russo C, Jin Z, Homma S, et al. LA phasic volumes and reservoir function in the elderly by real-time 3d echocardiography: normal values, prognostic significance, and clinical correlates. JACC Cardiovasc Imaging. 2017; 10:976–985. PMID:
28017387.
51. Freed BH, Daruwalla V, Cheng JY, et al. Prognostic utility and clinical significance of cardiac mechanics in heart failure with preserved ejection fraction: importance of left atrial strain. Circ Cardiovasc Imaging. 2016; 9:e003754. PMID:
26941415.
Article
52. Khan MS, Memon MM, Murad MH, et al. Left atrial function in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail. 2020; 22:472–485. PMID:
31919960.
Article
53. Morris DA, Takeuchi M, Krisper M, et al. Normal values and clinical relevance of left atrial myocardial function analysed by speckle-tracking echocardiography: multicentre study. Eur Heart J Cardiovasc Imaging. 2015; 16:364–372. PMID:
25368210.
Article
54. Morris DA, Belyavskiy E, Aravind-Kumar R, et al. Potential usefulness and clinical relevance of adding left atrial strain to left atrial volume index in the detection of left ventricular diastolic dysfunction. JACC Cardiovasc Imaging. 2018; 11:1405–1415. PMID:
29153567.
55. Inoue K, Khan FH, Remme EW, et al. Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur Heart J Cardiovasc Imaging. 2021; 23:61–70. PMID:
33496314.
Article
56. Backhaus SJ, Schulz A, Lange T, et al. Prognostic and diagnostic implications of impaired rest and exercise-stress left atrial compliance in heart failure with preserved ejection fraction: Insights from the HFpEF stress trial. Int J Cardiol. 2024; 404:131949. PMID:
38471649.
Article
57. Reddy YN, Obokata M, Verbrugge FH, Lin G, Borlaug BA. Atrial dysfunction in patients with heart failure with preserved ejection fraction and atrial fibrillation. J Am Coll Cardiol. 2020; 76:1051–1064. PMID:
32854840.
Article
58. Harada T, Kagami K, Shina T, et al. Diagnostic value of reduced left atrial compliance during ergometry exercise in heart failure with preserved ejection fraction. Eur J Heart Fail. 2023; 25:1293–1303. PMID:
37062872.
59. Patel RB, Lam CS, Svedlund S, et al. Disproportionate left atrial myopathy in heart failure with preserved ejection fraction among participants of the PROMIS-HFpEF study. Sci Rep. 2021; 11:4885. PMID:
33649383.
Article
60. Zakeri R, Chamberlain AM, Roger VL, Redfield MM. Temporal relationship and prognostic significance of atrial fibrillation in heart failure patients with preserved ejection fraction: a community-based study. Circulation. 2013; 128:1085–1093. PMID:
23908348.
Article
61. Backhaus SJ, Lange T, George EF, et al. Exercise stress real-time cardiac magnetic resonance imaging for noninvasive characterization of heart failure with preserved ejection fraction: the HFpEF-stress trial. Circulation. 2021; 143:1484–1498. PMID:
33472397.
Article
62. Schwartzenberg S, Redfield MM, From AM, Sorajja P, Nishimura RA, Borlaug BA. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol. 2012; 59:442–451. PMID:
22281246.
Article
63. Leung CC, Moondra V, Catherwood E, Andrus BW. Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am J Cardiol. 2010; 106:284–286. PMID:
20599017.
Article
64. Borlaug BA, Obokata M. Is it time to recognize a new phenotype? Heart failure with preserved ejection fraction with pulmonary vascular disease. Eur Heart J. 2017; 38:2874–2878. PMID:
28431020.
Article
65. Fayyaz AU, Edwards WD, Maleszewski JJ, et al. Global pulmonary vascular remodeling in pulmonary hypertension associated with heart failure and preserved or reduced ejection fraction. Circulation. 2018; 137:1796–1810. PMID:
29246894.
Article
66. Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022; 43:3618–3731. PMID:
36017548.
67. Rosenkranz S, Lang IM, Blindt R, et al. Pulmonary hypertension associated with left heart disease: Updated Recommendations of the Cologne Consensus Conference 2018. Int J Cardiol. 2018; 272:53–62.
Article
68. Hoeper MM, Lam CS, Vachiery JL, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a plea for proper phenotyping and further research. Eur Heart J. 2017; 38:2869–2873. PMID:
28011705.
Article
69. Gorter TM, Obokata M, Reddy YN, Melenovsky V, Borlaug BA. Exercise unmasks distinct pathophysiologic features in heart failure with preserved ejection fraction and pulmonary vascular disease. Eur Heart J. 2018; 39:2825–2835. PMID:
29947750.
Article
70. Singh I, Rahaghi FN, Naeije R, Oliveira RK, Systrom DM, Waxman AB. Right ventricular-arterial uncoupling during exercise in heart failure with preserved ejection fraction: role of pulmonary vascular dysfunction. Chest. 2019; 156:933–943. PMID:
31103695.
Article
71. Mohammed SF, Hussain I, AbouEzzeddine OF, et al. Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation. 2014; 130:2310–2320. PMID:
25391518.
Article
72. Gorter TM, Hoendermis ES, van Veldhuisen DJ, et al. Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail. 2016; 18:1472–1487. PMID:
27650220.
Article
73. Obokata M, Reddy YN, Melenovsky V, Pislaru S, Borlaug BA. Deterioration in right ventricular structure and function over time in patients with heart failure and preserved ejection fraction. Eur Heart J. 2019; 40:689–697. PMID:
30544228.
Article
74. Melenovsky V, Hwang SJ, Lin G, Redfield MM, Borlaug BA. Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J. 2014; 35:3452–3462. PMID:
24875795.
75. Lejeune S, Roy C, Ciocea V, et al. Right ventricular global longitudinal strain and outcomes in heart failure with preserved ejection fraction. J Am Soc Echocardiogr. 2020; 33:973–984.e2. PMID:
32387031.
Article
76. Meng Y, Zhu S, Xie Y, et al. Prognostic value of right ventricular 3D speckle-tracking strain and ejection fraction in patients with HFpEF. Front Cardiovasc Med. 2021; 8:694365. PMID:
34277743.
Article
77. Gorter TM, van Veldhuisen DJ, Voors AA, et al. Right ventricular-vascular coupling in heart failure with preserved ejection fraction and pre- vs. post-capillary pulmonary hypertension. Eur Heart J Cardiovasc Imaging. 2018; 19:425–432. PMID:
28531295.
Article
78. Aschauer S, Kammerlander AA, Zotter-Tufaro C, et al. The right heart in heart failure with preserved ejection fraction: insights from cardiac magnetic resonance imaging and invasive haemodynamics. Eur J Heart Fail. 2016; 18:71–80. PMID:
26449727.
Article
79. Ikoma T, Obokata M, Okada K, et al. Impact of right atrial remodeling in heart failure with preserved ejection fraction. J Card Fail. 2021; 27:577–584. PMID:
33385523.
Article
80. Hahn RT, Lawlor MK, Davidson CJ, et al. Tricuspid valve academic research consortium definitions for tricuspid regurgitation and trial endpoints. J Am Coll Cardiol. 2023; 82:1711–1735. PMID:
37804294.
Article
81. Florescu DR, Muraru D, Florescu C, et al. Right heart chambers geometry and function in patients with the atrial and the ventricular phenotypes of functional tricuspid regurgitation. Eur Heart J Cardiovasc Imaging. 2022; 23:930–940. PMID:
34747460.
Article
82. Enriquez-Sarano M, Messika-Zeitoun D, Topilsky Y, Tribouilloy C, Benfari G, Michelena H. Tricuspid regurgitation is a public health crisis. Prog Cardiovasc Dis. 2019; 62:447–451. PMID:
31707061.
83. Harada T, Obokata M, Omote K, et al. Independent and incremental prognostic value of semiquantitative measures of tricuspid regurgitation severity in heart failure with preserved ejection fraction. Eur Heart J Cardiovasc Imaging. 2020; 22:1443–1451.
Article
84. Kresoja KP, Lauten A, Orban M, et al. Transcatheter tricuspid valve repair in the setting of heart failure with preserved or reduced left ventricular ejection fraction. Eur J Heart Fail. 2020; 22:1817–1825. PMID:
32741057.
Article
85. Rommel KP, Besler C, Noack T, et al. Physiological and clinical consequences of right ventricular volume overload reduction after transcatheter treatment for tricuspid regurgitation. JACC Cardiovasc Interv. 2019; 12:1423–1434. PMID:
31326430.
Article
86. Donal E, Lund LH, Oger E, et al. Value of exercise echocardiography in heart failure with preserved ejection fraction: a substudy from the KaRen study. Eur Heart J Cardiovasc Imaging. 2016; 17:106–113. PMID:
26082167.
87. Obokata M, Kane GC, Reddy YN, Olson TP, Melenovsky V, Borlaug BA. Role of diastolic stress testing in the evaluation for heart failure with preserved ejection fraction: a simultaneous invasive-echocardiographic study. Circulation. 2017; 135:825–838. PMID:
28039229.
Article
88. Guazzi M, Bandera F, Ozemek C, Systrom D, Arena R. Cardiopulmonary exercise testing: what is its value? J Am Coll Cardiol. 2017; 70:1618–1636. PMID:
28935040.
89. Lee K, Jung JH, Kwon W, et al. The prognostic value of cardiopulmonary exercise testing and HFA-PEFF in patients with unexplained dyspnea and preserved left ventricular ejection fraction. Int J Cardiol. 2023; 386:74–82. PMID:
37230429.
Article
90. Pugliese NR, De Biase N, Gargani L, et al. Predicting the transition to and progression of heart failure with preserved ejection fraction: a weighted risk score using bio-humoural, cardiopulmonary, and echocardiographic stress testing. Eur J Prev Cardiol. 2021; 28:1650–1661. PMID:
33624088.
Article
91. Fukuta H, Goto T, Wakami K, Kamiya T, Ohte N. Effects of exercise training on cardiac function, exercise capacity, and quality of life in heart failure with preserved ejection fraction: a meta-analysis of randomized controlled trials. Heart Fail Rev. 2019; 24:535–547. PMID:
31032533.
Article
92. Vachiéry JL, Tedford RJ, Rosenkranz S, et al. Pulmonary hypertension due to left heart disease. Eur Respir J. 2019; 53:1801897. PMID:
30545974.
Article
93. D’Alto M, Badesch D, Bossone E, et al. A fluid challenge test for the diagnosis of occult heart failure. Chest. 2021; 159:791–797. PMID:
32805242.
Article
94. Sanders-van Wijk S, Barandiarán Aizpurua A, Brunner-La Rocca HP, et al. The HFA-PEFF and H
2 FPEF scores largely disagree in classifying patients with suspected heart failure with preserved ejection fraction. Eur J Heart Fail. 2021; 23:838–840. PMID:
33012125.
95. Selvaraj S, Myhre PL, Vaduganathan M, et al. Application of diagnostic algorithms for heart failure with preserved ejection fraction to the community. JACC Heart Fail. 2020; 8:640–653. PMID:
32535127.
Article
96. Barandiarán Aizpurua A, Sanders-van Wijk S, Brunner-La Rocca HP, et al. Validation of the HFA-PEFF score for the diagnosis of heart failure with preserved ejection fraction. Eur J Heart Fail. 2020; 22:413–421. PMID:
31472035.
Article
97. Kittleson MM, Panjrath GS, Amancherla K, et al. 2023 ACC Expert Consensus Decision Pathway on Management of Heart Failure With Preserved Ejection Fraction: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2023; 81:1835–1878. PMID:
37137593.
Article
98. Caenen A, Pernot M, Nightingale KR, et al. Assessing cardiac stiffness using ultrasound shear wave elastography. Phys Med Biol. 2022; 67:02TR01.
99. Petrescu A, Santos P, Orlowska M, et al. Velocities of naturally occurring myocardial shear waves increase with age and in cardiac amyloidosis. JACC Cardiovasc Imaging. 2019; 12:2389–2398. PMID:
30772218.
Article
100. Villemain O, Correia M, Mousseaux E, et al. Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults. JACC Cardiovasc Imaging. 2019; 12:1135–1145. PMID:
29550319.
Article
101. Comte De Alencar Neto AC, Caio CR, Fonseca Cafezeiro R, et al. Myocardial stiffness evaluation by shear wave elastography in transthyretin amyloidosis with and without cardiac involvement. Eur Heart J. 2023; 44(Suppl 2):ehad655.1875.
Article
102. Cvijic M, Bézy S, Petrescu A, et al. Interplay of cardiac remodelling and myocardial stiffness in hypertensive heart disease: a shear wave imaging study using high-frame rate echocardiography. Eur Heart J Cardiovasc Imaging. 2020; 21:664–672. PMID:
31377789.
Article
103. Bézy S, Duchenne J, Orlowska M, et al. Impact of loading and myocardial mechanical properties on natural shear waves: comparison to pressure-volume loops. JACC Cardiovasc Imaging. 2022; 15:2023–2034. PMID:
36163339.
Article
104. Arani A, Arunachalam SP, Chang IC, et al. Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis. J Magn Reson Imaging. 2017; 46:1361–1367. PMID:
28236336.
Article
105. Akerman AP, Porumb M, Scott CG, et al. Automated echocardiographic detection of heart failure with preserved ejection fraction using artificial intelligence. JACC Adv. 2023; 2:100452. PMID:
38939447.
Article
106. Pierre-Jean M, Marut B, Curtis E, et al. Phenotyping of heart failure with preserved ejection faction using electronic health records and echocardiography. Eur Heart J Open. 2023; 4:oead133. PMID:
38196848.