1. Grasner JT, Herlitz J, Tjelmeland IBM, Wnent J, Masterson S, Lilja G, et al. 2021; European Resuscitation Council Guidelines 2021: Epidemiology of cardiac arrest in Europe. Resuscitation. 161:61–79. DOI:
10.1016/j.resuscitation.2021.02.007. PMID:
33773833.
Article
5. Brady WJ, Gurka KK, Mehring B, Peberdy MA, O'Connor RE. American Heart Association's Get with the Guidelines I. 2011; In-hospital cardiac arrest: impact of monitoring and witnessed event on patient survival and neurologic status at hospital discharge. Resuscitation. 82:845–52. DOI:
10.1016/j.resuscitation.2011.02.028. PMID:
21454008.
Article
6. Churpek MM, Yuen TC, Park SY, Gibbons R, Edelson DP. 2014; Using electronic health record data to develop and validate a prediction model for adverse outcomes in the wards*. Crit Care Med. 42:841–8. DOI:
10.1097/CCM.0000000000000038. PMID:
24247472. PMCID:
PMC3959228.
Article
7. Churpek MM, Yuen TC, Winslow C, Robicsek AA, Meltzer DO, Gibbons RD, et al. 2014; Multicenter development and validation of a risk stratification tool for ward patients. Am J Respir Crit Care Med. 190:649–55. DOI:
10.1164/rccm.201406-1022OC. PMID:
25089847. PMCID:
PMC4214112.
Article
8. Churpek MM, Yuen TC, Winslow C, Meltzer DO, Kattan MW, Edelson DP. 2016; Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards. Crit Care Med. 44:368–74. DOI:
10.1097/CCM.0000000000001571. PMID:
26771782. PMCID:
PMC4736499.
Article
10. Kim J, Chae M, Chang HJ, Kim YA, Park E. 2019; Predicting Cardiac Arrest and Respiratory Failure Using Feasible Artificial Intelligence with Simple Trajectories of Patient Data. J Clin Med. 8:DOI:
10.3390/jcm8091336. PMID:
31470543. PMCID:
PMC6780058.
Article
11. Cho KJ, Kwon O, Kwon JM, Lee Y, Park H, Jeon KH, et al. 2020; Detecting Patient Deterioration Using Artificial Intelligence in a Rapid Response System. Crit Care Med. 48:e285–e9. DOI:
10.1097/CCM.0000000000004236. PMID:
32205618.
Article
12. Romero-Brufau S, Whitford D, Johnson MG, Hickman J, Morlan BW, Therneau T, et al. 2021; Using machine learning to improve the accuracy of patient deterioration predictions: Mayo Clinic Early Warning Score (MC-EWS). J Am Med Inform Assoc. 28:1207–15. DOI:
10.1093/jamia/ocaa347. PMID:
33638343. PMCID:
PMC8661441.
Article
13. Subbe CP, Kruger M, Rutherford P, Gemmel L. 2001; Validation of a modified Early Warning Score in medical admissions. QJM. 94:521–6. DOI:
10.1093/qjmed/94.10.521. PMID:
11588210.
Article
16. Chen MC, Huang TY, Chen TY, Boonyarat P, Chang YC. 2023; Clinical narrative-aware deep neural network for emergency department critical outcome prediction. J Biomed Inform. 138:104284. DOI:
10.1016/j.jbi.2023.104284. PMID:
36632861.
Article
22. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. 2011; Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12:2825–30.