1. Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. 2022; The global burden of cardiovasculardiseases and risk: a compass for future health. J Am Coll Cardiol. 80:2361–2371. DOI:
10.1016/j.jacc.2022.11.005. PMID:
36368511.
2. Roth GA, Mensah GA, Fuster V. 2020; The global burden of cardiovascular diseases and risks: a compass for global action. J Am Coll Cardiol. 76:2980–2981. DOI:
10.1016/j.jacc.2020.11.021. PMID:
33309174.
3. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, et al. 2022; Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 14:e153–e639. Erratum in:
Circulation. 2022;146:e141. DOI:
10.1161/CIR.0000000000001052. PMID:
35078371.
Article
5. GBD 2021 Diabetes Collaborators. 2023; Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 402:203–234. Erratum in: Lancet. 2023;402:1132.
6. Feingold B, Mahle WT, Auerbach S, Clemens P, Domenighetti AA, Jefferies JL, Judge DP, Lal AK, Markham LW, Parks WJ, Tsuda T, Wang PJ, Yoo SJ. American Heart Association Pediatric Heart Failure Committee of the Council on Cardiovascular Disease in the Young; Council on Clinical Cardiology; Council on Cardiovascular Radiology and Intervention; Council on Functional Genomics and Translational Biology; and Stroke Council. 2017; Management of cardiac involvement associated with neuromuscular diseases: a scientific statement from the American Heart Association. Circulation. 136:e200–e231. DOI:
10.1161/CIR.0000000000000526. PMID:
28838934.
Article
7. Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. 2023; Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 118:3272–3287. Erratum in:
Cardiovasc Res. 2023;119:1453. DOI:
10.1093/cvr/cvac013. PMID:
35150240.
Article
8. Labuda I. Schaechter M, editor. 2009. Flavor compounds. Encyclopedia of microbiology. 3rd ed. Academic Press: p. 305–320. DOI:
10.1016/B978-012373944-5.00148-6.
9. Du QQ, Liu SY, Xu RF, Li M, Song FR, Liu ZQ. 2012; Studies on structures and activities of initial Maillard reaction products by electrospray ionisation mass spectrometry combined with liquid chromatography in processing of red ginseng. Food Chem. 135:832–838. DOI:
10.1016/j.foodchem.2012.04.126. PMID:
22868166.
Article
10. In G, Ahn NG, Bae BS, Lee MW, Park HW, Jang KH, Cho BG, Han CK, Park CK, Kwak YS. 2017;
In situanalysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng. J Ginseng Res. 41:361–369. DOI:
10.1016/j.jgr.2016.07.004. PMID:
28701878. PMCID:
PMC5489774.
Article
11. Reffitt DM, Burden TJ, Seed PT, Wood J, Thompson RP, Powell JJ. 2000; Assessment of iron absorption from ferric trimaltol. Ann Clin Biochem. 37:457–466. DOI:
10.1177/000456320003700405. PMID:
10902861.
Article
12. Khoury A, Pagan KA, Farland MZ. 2021; Ferric maltol: a new oral iron formulation for the treatment of iron deficiency in adults. Ann Pharmacother. 55:222–229. DOI:
10.1177/1060028020941014. PMID:
32633548.
Article
13. Schmidt C, Allen S, Kopyt N, Pergola P. 2021; Iron replacement therapy with oral ferric maltol: review of the evidence and expert opinion. J Clin Med. 10:4448. DOI:
10.3390/jcm10194448. PMID:
34640466. PMCID:
PMC8509126.
Article
14. Yasumoto E, Nakano K, Nakayachi T, Morshed SR, Hashimoto K, Kikuchi H, Nishikawa H, Kawase M, Sakagami H. 2004; Cytotoxic activity of deferiprone, maltol and related hydroxyketones against human tumor cell lines. Anticancer Res. 24:755–762.
15. Notaro A, Jakubaszek M, Koch S, Rubbiani R, Dömötör O, Enyedy ÉA, Dotou M, Bedioui F, Tharaud M, Goud B, Ferrari S, Alessio E, Gasser G. 2020; A maltol-containing ruthenium polypyridyl complex as a potential anticancer agent. Chemistry. 26:4997–5009. DOI:
10.1002/chem.201904877. PMID:
32065454.
Article
16. Han Y, Xu Q, Hu JN, Han XY, Li W, Zhao LC. 2015; Maltol, a food flavoring agent, attenuates acute alcohol-induced oxidative damage in mice. Nutrients. 7:682–696. DOI:
10.3390/nu7010682. PMID:
25608939. PMCID:
PMC4303861.
Article
17. Liu W, Wang Z, Hou JG, Zhou YD, He YF, Jiang S, Wang YP, Ren S, Li W. 2018; The liver protection effects of maltol, a flavoring agent, on carbon tetrachloride-induced acute liver injury in mice via inhibiting apoptosis and inflammatory response. Molecules. 23:2120. DOI:
10.3390/molecules23092120. PMID:
30142916. PMCID:
PMC6225187.
Article
18. Mi XJ, Hou JG, Jiang S, Liu Z, Tang S, Liu XX, Wang YP, Chen C, Wang Z, Li W. 2019; Maltol mitigates thioacetamide-induced liver fibrosis through TGF-β1-mediated activation of PI3K/Akt signaling pathway. J Agric Food Chem. 67:1392–1401. DOI:
10.1021/acs.jafc.8b05943. PMID:
30644744.
Article
19. Sha JY, Li JH, Zhou YD, Yang JY, Liu W, Jiang S, Wang YP, Zhang R, Di P, Li W. 2021; The p53/p21/p16 and PI3K/Akt signaling pathways are involved in the ameliorative effects of maltol on D-galactose-induced liver and kidney aging and injury. Phytother Res. 35:4411–4424. DOI:
10.1002/ptr.7142. PMID:
34028092.
Article
20. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, et al. ; DAPA-HF Trial Committees and Investigators. 2019; Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 381:1995–2008. DOI:
10.1056/NEJMoa1911303. PMID:
31535829.
Article
22. Quinlan JG, Hahn HS, Wong BL, Lorenz JN, Wenisch AS, Levin LS. 2004; Evolution of the mdx mouse cardiomyopathy: physiological and morphological findings. Neuromuscul Disord. 14:491–496. DOI:
10.1016/j.nmd.2004.04.007. PMID:
15336690.
Article
25. Sha JY, Zhou YD, Yang JY, Leng J, Li JH, Hu JN, Liu W, Jiang S, Wang YP, Chen C, Li W. 2019; Maltol (3-hydroxy-2-methyl-4-pyrone) slows d-galactose-induced brain aging process by damping the Nrf2/HO-1-mediated oxidative stress in mice. J Agric Food Chem. 67:10342–10351. DOI:
10.1021/acs.jafc.9b04614. PMID:
31461273.
Article
26. Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, De Galarreta CM, Cuadrado A. 2004; Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem. 279:8919–8929. DOI:
10.1074/jbc.M309660200. PMID:
14688281.
Article
30. Scapagnini G, Foresti R, Calabrese V, Giuffrida Stella AM, Green CJ, Motterlini R. 2002; Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol Pharmacol. 61:554–561. Erratum in:
Mol Pharmacol. 2002;61:1264. DOI:
10.1124/mol.61.3.554. PMID:
11854435.
Article
31. Xing JJ, Mi XJ, Hou JG, Cai EB, Zheng SW, Wang SH, Wang Z, Chen C, Li W. 2022; Maltol mitigates cisplatin-evoked cardiotoxicity via inhibiting the PI3K/Akt signaling pathway in rodents in vivo and in vitro. Phytother Res. 36:1724–1735. DOI:
10.1002/ptr.7405. PMID:
35174550.
Article