1. Abramov I, Park MT, Belykh E, Dru AB, Xu Y, Gooldy TC, et al. Intraoperative confocal laser endomicroscopy: prospective in vivo feasibility study of a clinical-grade system for brain tumors. J Neurosurg. 138:587–597. 2023.
Article
2. Abramov I, Park MT, Gooldy TC, Xu Y, Lawton MT, Little AS, et al. Real-time intraoperative surgical telepathology using confocal laser endomicroscopy. Neurosurg Focus. 52:E9. 2022.
Article
3. Ahuja AS, Polascik BW, Doddapaneni D, Byrnes ES, Sridhar J. The digital metaverse: applications in artificial intelligence, medical education, and integrative health. Integr Med Res. 12:100917. 2023.
Article
4. Amann J, Blasimme A, Vayena E, Frey D, Madai VI; Precise4Q consortium. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 20:310. 2020.
Article
5. Amos WB, White JG. How the confocal laser scanning microscope entered biological research. Biol Cell. 95:335–342. 2003.
Article
6. Andrews C, Southworth MK, Silva JNA, Silva JR. Extended reality in medical practice. Curr Treat Options Cardiovasc Med. 21:18. 2019.
Article
7. Aschke M, Wirtz CR, Raczkowsky J, Worn H, Kunze S. Augmented reality in operating microscopes for neurosurgical interventions. In : First International IEEE EMBS Conference on Neural Engineering, 2003.; IEEE;2003. p. 652–655.
Article
8. Balzer JR, Caviness J, Krieger D. The evolution of real-time remote intraoperative neurophysiological monitoring. Computer. 56:28–38. 2023.
Article
9. Baum ZMC, Lasso A, Ryan S, Ungi T, Rae E, Zevin B, et al. Augmented reality training platform for neurosurgical burr hole localization. J Med Robot Res. 04:1942001. 2019.
Article
10. Belykh E, Zhao X, Ngo B, Farhadi DS, Kindelin A, Ahmad S, et al. Visualization of brain microvasculature and blood flow in vivo: feasibility study using confocal laser endomicroscopy. Microcirculation. 28:e12678. 2021.
Article
11. Besharati Tabrizi L, Mahvash M. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique. J Neurosurg. 123:206–211. 2015.
Article
12. Byun YH, Won JK, Hong DH, Kang H, Kim JH, Yu MO, et al. A prospective multicenter assessor blinded pilot study using confocal laser endomicroscopy for intraoperative brain tumor diagnosis. Sci Rep. 14:6784. 2024.
Article
13. Cabrilo I, Schaller K, Bijlenga P. Augmented reality-assisted bypass surgery: embracing minimal invasiveness. World Neurosurg. 83:596–602. 2015.
Article
15. Charalampaki P, Nakamura M, Athanasopoulos D, Heimann A. Confocal-assisted multispectral fluorescent microscopy for brain tumor surgery. Front Oncol. 9:583. 2019.
Article
16. Cheng JX, Jia YK, Zheng G, Xie XS. Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. Biophys J. 83:502–509. 2002.
Article
17. Colombo E, Regli L, Esposito G, Germans MR, Fierstra J, Serra C, et al. Mixed reality for cranial neurosurgical planning: a single-center applicability study with the first 107 subsequent holograms. Oper Neurosurg (Hagerstown). 26:551–558. 2023.
Article
18. Cui H, Xie X, Xu S, Hu Y. A Dynamic Prediction Model for Intraoperative Somatosensory Evoked Potential Monitoring. In : 2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA); Shenzhen, China. IEEE;2015. p. 31–35.
Article
19. Cui Y, Zhou Y, Zhang H, Yuan Y, Wang J, Zhang Z. Application of glasses-free augmented reality localization in neurosurgery. World Neurosurg. 180:e296–e301. 2023.
Article
20. DePaoli D, Lemoine É, Ember K, Parent M, Prud’homme M, Cantin L, et al. Rise of Raman spectroscopy in neurosurgery: a review. J Biomed Opt. 25:050901. 2020.
Article
21. Desroches J, Lemoine É, Pinto M, Marple E, Urmey K, Diaz R, et al. Development and first in-human use of a Raman spectroscopy guidance system integrated with a brain biopsy needle. J Biophotonics. 12:e201800396. 2019.
Article
22. Dho YS, Lee BC, Moon HC, Kim KM, Kang H, Lee EJ, et al. Validation of real-time inside-out tracking and depth realization technologies for augmented reality-based neuronavigation. Int J Comput Assist Radiol Surg. 19:15–25. 2024.
Article
23. Dho YS, Park SJ, Choi H, Kim Y, Moon HC, Kim KM, et al. Development of an inside-out augmented reality technique for neurosurgical navigation. Neurosurg Focus. 51:E21. 2021.
Article
24. Diaz R, Yoon J, Chen R, Quinones-Hinojosa A, Wharen R, Komotar R. Real-time video-streaming to surgical loupe mounted head-up display for navigated meningioma resection. Turk Neurosurg. 28:682–688. 2018.
Article
25. Egger J, Gsaxner C, Luijten G, Chen J, Chen X, Bian J, et al. Is the apple vision pro the ultimate display? A first perspective and survey on entering the wonderland of precision medicine. JMIR Serious Games. 12:e52785. 2024.
Article
26. Egger MD, Petrăn M. New reflected-light microscope for viewing unstained brain and ganglion cells. Science. 157:305–307. 1967.
Article
27. Eschbacher J, Martirosyan NL, Nakaji P, Sanai N, Preul MC, Smith KA, et al. In vivo intraoperative confocal microscopy for real-time histopathological imaging of brain tumors. J Neurosurg. 116:854–860. 2012.
Article
28. Fan B, Li HX, Hu Y. An intelligent decision system for intraoperative somatosensory evoked potential monitoring. IEEE Trans Neural Syst Rehabil Eng. 24:300–307. 2016.
Article
29. Fick T, van Doormaal JAM, Hoving EW, Willems PWA, van Doormaal TPC. Current accuracy of augmented reality neuronavigation systems: systematic review and meta-analysis. World Neurosurg. 146:179–188. 2021.
Article
30. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, et al. Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy. Science. 322:1857–1861. 2008.
Article
31. Gibby J, Cvetko S, Javan R, Parr R, Gibby W. Use of augmented reality for image-guided spine procedures. Eur Spine J. 29:1823–1832. 2020.
Article
32. Heinrich F, Schwenderling L, Becker M, Skalej M, Hansen C. HoloInjection: augmented reality support for CT-guided spinal needle injections. Healthc Technol Lett. 6:165–171. 2019.
Article
33. Höhne J, Schebesch KM, Zoubaa S, Proescholdt M, Riemenschneider MJ, Schmidt NO. Intraoperative imaging of brain tumors with fluorescein: confocal laser endomicroscopy in neurosurgery. Clinical and user experience. Neurosurg Focus. 50:E19. 2021.
Article
34. Hollon T, Jiang C, Chowdury A, Nasir-Moin M, Kondepudi A, Aabedi A, et al. Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging. Nat Med. 29:828–832. 2023.
Article
36. Hollon TC, Pandian B, Adapa AR, Urias E, Save AV, Khalsa SSS, et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat Med. 26:52–58. 2020.
Article
37. Incekara F, Smits M, Dirven C, Vincent A. Clinical feasibility of a wearable mixed-reality device in neurosurgery. World Neurosurg. 118:e422–e427. 2018.
Article
38. Iseki H, Masutani Y, Iwahara M, Tanikawa T, Muragaki Y, Taira T, et al. Volumegraph (overlaid three-dimensional image-guided navigation). Clinical application of augmented reality in neurosurgery. Stereotact Funct Neurosurg. 68(1-4 Pt 1):18–24. 1997.
Article
39. Ivan ME, Eichberg DG, Di L, Shah AH, Luther EM, Lu VM, et al. Augmented reality head-mounted display-based incision planning in cranial neurosurgery: a prospective pilot study. Neurosurg Focus. 51:E3. 2021.
Article
40. Jain S, Gao Y, Yeo TT, Ngiam KY. Use of mixed reality in neuro-oncology: a single centre experience. Life (Basel). 13:398. 2023.
Article
41. Jamaludin MR, Lai KW, Chuah JH, Zaki MA, Hasikin K, Abd Razak NA, et al. Machine learning application of transcranial motor-evoked potential to predict positive functional outcomes of patients. Comput Intell Neurosci. 2022:2801663. 2022.
Article
42. Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K, et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med. 7:274ra219. 2015.
Article
43. Jiang W, Zhan Q, Wang J, Wei M, Li S, Mei R, et al. Quantitative identification of ventral/dorsal nerves through intraoperative neurophysiological monitoring by supervised machine learning. Front Pediatr. 11:1118924. 2023.
Article
44. Koljenović S, Choo-Smith LP, Bakker Schut TC, Kros JM, van den Berge HJ, Puppels GJ. Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by Raman spectroscopy. Lab Invest. 82:1265–1277. 2002.
Article
45. Kuo TT, Kim HE, Ohno-Machado L. Blockchain distributed ledger technologies for biomedical and health care applications. J Am Med Inform Assoc. 24:1211–1220. 2017.
Article
46. Lai M, Skyrman S, Shan C, Babic D, Homan R, Edström E, et al. Fusion of augmented reality imaging with the endoscopic view for endonasal skull base surgery; a novel application for surgical navigation based on intraoperative cone beam computed tomography and optical tracking. PLoS One. 15:e0227312. 2020.
Article
47. Mahvash M, Besharati Tabrizi L. A novel augmented reality system of image projection for image-guided neurosurgery. Acta Neurochir (Wien). 155:943–947. 2013.
Article
48. Martirosyan NL, Cavalcanti DD, Eschbacher JM, Delaney PM, Scheck AC, Abdelwahab MG, et al. Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor. J Neurosurg. 115:1131–1138. 2011.
Article
49. Minsky M. Memoir on inventing the confocal scanning microscope. Scanning. 10:128–138. 1988.
Article
50. Mizuno A, Kitajima H, Kawauchi K, Muraishi S, Ozaki Y. Near-infrared Fourier transform Raman spectroscopic study of human brain tissues and tumours. J Raman Spectrosc. 25:25–29. 1994.
Article
51. Mooney MA, Zehri AH, Georges JF, Nakaji P. Laser scanning confocal endomicroscopy in the neurosurgical operating room: a review and discussion of future applications. Neurosurg Focus. 36:E9. 2014.
Article
52. Nebeker C, Torous J, Bartlett Ellis RJ. Building the case for actionable ethics in digital health research supported by artificial intelligence. BMC Med. 17:137. 2019.
Article
53. Paleologos TS, Wadley JP, Kitchen ND, Thomas DG. Clinical utility and cost-effectiveness of interactive image-guided craniotomy: clinical comparison between conventional and image-guided meningioma surgery. Neurosurgery. 47:40–47. discussion 47-48. 2000.
Article
54. Pavlov V, Meyronet D, Meyer-Bisch V, Armoiry X, Pikul B, Dumot C, et al. Intraoperative probe-based confocal laser endomicroscopy in surgery and stereotactic biopsy of low-grade and high-grade gliomas: a feasibility study in humans. Neurosurgery. 79:604–612. 2016.
Article
55. Pescador AM, Lavrador JP, Lejarde A, Bleil C, Vergani F, Baamonde AD, et al. Bayesian networks for risk assessment and postoperative deficit prediction in intraoperative neurophysiology for brain surgery. J Clin Monit Comput. 38:1043–1055. 2024.
Article
56. Porras JL, Khalid S, Root BK, Khan IS, Singer RJ. Point-of-view recording devices for intraoperative neurosurgical video capture. Front Surg. 3:57. 2016.
Article
57. Potma EO, de Boeij WP, van Haastert PJ, Wiersma DA. Real-time visualization of intracellular hydrodynamics in single living cells. Proc Natl Acad Sci U S A. 98:1577–1582. 2001.
Article
58. Qiao N, Song M, Ye Z, He W, Ma Z, Wang Y, et al. Deep learning for automatically visual evoked potential classification during surgical decompression of sellar region tumors. Transl Vis Sci Technol. 8:21. 2019.
Article
59. Raman CV, Krishnan KS. A new type of secondary radiation. Nature. 121:501–502. 1928.
Article
60. Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg. 65:545–549. 1986.
Article
61. Sanai N, Eschbacher J, Hattendorf G, Coons SW, Preul MC, Smith KA, et al. Intraoperative confocal microscopy for brain tumors: a feasibility analysis in humans. Neurosurgery. 68(2 Suppl Operative):282–290. discussion 290. 2011.
Article
62. Sanai N, Snyder LA, Honea NJ, Coons SW, Eschbacher JM, Smith KA, et al. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J Neurosurg. 115:740–748. 2011.
Article
63. Sankar T, Delaney PM, Ryan RW, Eschbacher J, Abdelwahab M, Nakaji P, et al. Miniaturized handheld confocal microscopy for neurosurgery: results in an experimental glioblastoma model. Neurosurgery. 66:410–417. discussion 417-418. 2010.
64. Shenai MB, Tubbs RS, Guthrie BL, Cohen-Gadol AA. Virtual interactive presence for real-time, long-distance surgical collaboration during complex microsurgical procedures. J Neurosurg. 121:277–284. 2014.
Article
65. Shu XJ, Wang Y, Xin H, Zhang ZZ, Xue Z, Wang FY, et al. Real-time augmented reality application in presurgical planning and lesion scalp localization by a smartphone. Acta Neurochir (Wien). 164:1069–1078. 2022.
Article
66. Sievert M, Stelzle F, Aubreville M, Mueller SK, Eckstein M, Oetter N, et al. Intraoperative free margins assessment of oropharyngeal squamous cell carcinoma with confocal laser endomicroscopy: a pilot study. Eur Arch Otorhinolaryngol. 278:4433–4439. 2021.
Article
67. Skyrman S, Lai M, Edström E, Burström G, Förander P, Homan R, et al. Augmented reality navigation for cranial biopsy and external ventricular drain insertion. Neurosurg Focus. 51:E7. 2021.
Article
68. Tashibu K. Analysis of water content in rat brain using Raman spectroscopy. No to shinkei. 42:999–1004. 1990.
69. Van Gestel F, Frantz T, Buyck F, Geens W, Neuville Q, Bruneau M, et al. Neuro-oncological augmented reality planning for intracranial tumor resection. Front Neurol. 14:1104571. 2023.
Article
70. Wang JY, Qu V, Hui C, Sandhu N, Mendoza MG, Panjwani N, et al. Stratified assessment of an FDA-cleared deep learning algorithm for automated detection and contouring of metastatic brain tumors in stereotactic radiosurgery. Radiat Oncol. 18:61. 2023.
Article
71. Wang Y, Su Z, Zhang N, Xing R, Liu D, Luan TH, et al. A survey on metaverse: fundamentals, security, and privacy. IEEE Commun Surv Tutor. 25:319–352. 2023.
Article
72. Wilson JP Jr, Kumbhare D, Ronkon C, Guthikonda B, Hoang S. Application of machine learning strategies to model the effects of sevoflurane on somatosensory-evoked potentials during spine surgery. Diagnostics (Basel). 13:3389. 2023.
Article
73. Wilson JP Jr, Kumbhare D, Kandregula S, Oderhowho A, Guthikonda B, Hoang S. Proposed applications of machine learning to intraoperative neuromonitoring during spine surgeries. Neurosci Inform. 3:100143. 2023.
74. Xu Y, Abramov I, Belykh E, Mignucci-Jiménez G, Park MT, Eschbacher JM, et al. Characterization of ex vivo and in vivo intraoperative neurosurgical confocal laser endomicroscopy imaging. Front Oncol. 12:979748. 2022.
Article
75. Xu Y, Mathis AM, Pollo B, Schlegel J, Maragkou T, Seidel K, et al. Intraoperative in vivo confocal laser endomicroscopy imaging at glioma margins: can we detect tumor infiltration? J Neurosurg. 40:357–366. 2023.
Article
76. Yoon JW, Chen RE, Han PK, Si P, Freeman WD, Pirris SM. Technical feasibility and safety of an intraoperative head-up display device during spine instrumentation. Int J Med Robot. 13:e1770. 2017.
Article
77. Yoon JW, Chen RE, ReFaey K, Diaz RJ, Reimer R, Komotar RJ, et al. Technical feasibility and safety of image-guided parieto-occipital ventricular catheter placement with the assistance of a wearable head-up display. Int J Med Robot. 13:e1836. 2017.
Article
78. Zehri AH, Ramey W, Georges JF, Mooney MA, Martirosyan NL, Preul MC, et al. Neurosurgical confocal endomicroscopy: a review of contrast agents, confocal systems, and future imaging modalities. Surg Neurol Int. 5:60. 2014.
Article
79. Zha X, Wehbe L, Sclabassi RJ, Mace Z, Liang YV, Yu A, et al. A deep learning model for automated classification of intraoperative continuous emg. IEEE Trans Med Robot Bionics. 3:44–52. 2021.
Article
80. Zhang J, Yang Z, Jiang S, Zhou Z. A spatial registration method based on 2D-3D registration for an augmented reality spinal surgery navigation system. Int J Med Robot. 20:e2612. 2024.
Article
81. Zhang ZY, Duan WC, Chen RK, Zhang FJ, Yu B, Zhan YB, et al. Preliminary application of mxed reality in neurosurgery: development and evaluation of a new intraoperative procedure. J Clin Neurosci. 67:234–238. 2019.
Article
82. Ziebart A, Stadniczuk D, Roos V, Ratliff M, von Deimling A, Hänggi D, et al. Deep neural network for differentiation of brain tumor tissue displayed by confocal laser endomicroscopy. Front Oncol. 11:668273. 2021.
Article
83. Zumbusch A, Holtom GR, Xie XS. Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering. Phys Rev Lett 82. 82:4142–4145. 1999.
Article