Clin Exp Otorhinolaryngol.  2025 Feb;18(1):21-29. 10.21053/ceo.2024.00253.

Robotic Versus Manual Electrode Insertion in Cochlear Implant Surgery: An Experimental Study

Affiliations
  • 1King Abdullah Ear Specialist Center (KAESC), King Saud University Medical City, Riyadh, Saudi Arabia
  • 2Department of Otolaryngology-Head and Neck Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
  • 3King Fahad Medical City, Ministry of Health, Riyadh, Saudi Arabia
  • 4Research Department, MED-EL GmbH, Riyadh, Saudi Arabia
  • 5R&D, MED-EL GmbH, Innsbruck, Austria
  • 6CASCINATION AG, Bern, Switzerland

Abstract


Objectives
. This experimental study compared the precision and surgical outcomes of manual versus robotic electrode insertions in cochlear implantation.
Methods
. The study was conducted on formalin-fixed cadaveric heads, with nine senior neurotologists performing both manual and robotic insertions.
Results
. The results showed no statistically significant differences between the two methods in terms of insertion angle, cochlear coverage, or electrode coverage. However, the robotic method demonstrated a significantly slower and more controlled insertion speed (0.1 mm/sec) compared to manual insertion (0.66±0.31 mm/sec), which is crucial for minimizing intra-cochlear force and pressures. Although robotic insertions resulted in fewer complications such as tip fold-over or scala deviation, there were instances of incomplete insertion.
Conclusion
. The robotic system provided a consistent and controlled insertion process, potentially standardizing cochlear implant operations and reducing outcome variability. The study concludes that robotic-assisted insertion offers significant advantages in controlling insertion speed and consistency, supporting the continued development and clinical evaluation of robotic systems for cochlear implant surgery.

Keyword

Cochlear Implantation; Robotic Insertion; Manual Insertion; Robotic Cochlear Implantation; Electrode Coverage

Figure

  • Fig. 1. Schematic overview of the set-up, including the OTODRIVE, Forceps OD, Connector OD, OTOARM Aligner, and OTOARM.

  • Fig. 2. (A) The robotic insertion setup. (B) The electrode is inserted through the round window using OTODRIVE.

  • Fig. 3. Postoperative analysis of case 7L using the OTOPLAN software. Insertion status of the electrode array inside the three-dimensional reconstruction of the full cochlea in red (A) and scala tympani in purple (B). CC, center of cochlea; CRW, center of the round window; L, left.

  • Fig. 4. Postoperative insertion angle (A), cochlear coverage (B), and electrode coverage (C) between the manual and robotic techniques. The solid gray line represents the mean for each group.

  • Fig. 5. Preoperative estimation and postoperative actual C1 insertion angle for manual (A) and robotic (B) insertions. The cases with insertion complications are marked by a specific symbol. L, left; R, right.


Reference

1. Alshalan A, Abdelsamad Y, Yousef M, Alahmadi A, Almuhawas F, Hagr A. Early activation after cochlear implantation: a systematic review. Eur Arch Otorhinolaryngol. 2023; Aug. 280(8):3489–502.
Article
2. Alhabib SF, Abdelsamad Y, Yousef M, Alzhrani F, Hagr A. Effect of early activation of cochlear implant on electrode impedance in pediatric population. Int J Pediatr Otorhinolaryngol. 2021; Jan. 140:110543.
Article
3. Aebischer P, Mantokoudis G, Weder S, Anschuetz L, Caversaccio M, Wimmer W. In-vitro study of speed and alignment angle in cochlear implant electrode array insertions. IEEE Trans Biomed Eng. 2022; Jan. 69(1):129–37.
Article
4. Dhanasingh A, Jolly C. Review on cochlear implant electrode array tip fold-over and scalar deviation. J Otol. 2019; Sep. 14(3):94–100.
Article
5. Alahmadi A, Abdelsamad Y, Dhanasingh A, Almuhawas F, Alsanosi A. Enhancing cochlear duct length estimation by incorporating second-turn parameters. Sci Rep. 2023; Dec. 13(1):21496.
Article
6. Kesler K, Dillon NP, Fichera L, Labadie RF. Human kinematics of cochlear implant surgery: an investigation of insertion micro-motions and speed limitations. Otolaryngol Head Neck Surg. 2017; Sep. 157(3):493–8.
Article
7. Hussong A, Rau TS, Ortmaier T, Heimann B, Lenarz T, Majdani O. An automated insertion tool for cochlear implants: another step towards atraumatic cochlear implant surgery. Int J Comput Assist Radiol Surg. 2010; Mar. 5(2):163–71.
Article
8. Schurzig D, Labadie RF, Hussong A, Rau TS, Webster RJ 3rd. Design of a tool integrating force sensing with automated insertion in cochlear implantation. IEEE ASME Trans Mechatron. 2012; Apr. 17(2):381–9.
Article
9. Bruns TL, Riojas KE, Ropella DS, Cavilla MS, Petruska AJ, Freeman MH, et al. Magnetically steered robotic insertion of cochlear-implant electrode arrays: system integration and first-in-cadaver results. IEEE Robot Autom Lett. 2020; Apr. 5(2):2240–7.
Article
10. Aebischer P, Sarbach B, Weder S, Mantokoudis G, Caversaccio M, Anschuetz L. Development and evaluation of a reusable, force measuring tool for the robot-assisted insertion of cochlear implant electrode arrays. IEEE Trans Biomed Eng. 2024; Jul. 12. [Epub]. https://doi.org/10.1109/TBME.2024.3386723.
Article
11. Gantz JA, Gantz BJ, Kaufmann CR, Henslee AM, Dunn CC, Hua X, et al. A steadier hand: the first human clinical trial of a single-use robotic-assisted surgical device for cochlear implant electrode array insertion. Otol Neurotol. 2023; Jan. 44(1):34–9.
Article
12. Jia H, Pan JX, Li Y, Zhang ZH, Tan HY, Wang ZY, et al. Preliminary application of robot-assisted electrode insertion in cochlear implantation. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2020; Oct. 55(10):952–6.
13. Abari J, Heuninck E, Topsakal V. Entirely robotic cochlear implant surgery. Am J Otolaryngol. 2024; Sep-Oct. 45(5):104360.
Article
14. Aebischer P, Anschuetz L, Caversaccio M, Mantokoudis G, Weder S. Quantitative in-vitro assessment of a novel robot-assisted system for cochlear implant electrode insertion. Int J Comput Assist Radiol Surg. 2025; Feb. 20(2):323–32.
Article
15. Muller-Graff FT, Voelker J, Kurz A, Hagen R, Neun T, Rak K. Accuracy of radiological prediction of electrode position with otological planning software and implications of high-resolution imaging. Cochlear Implants Int. 2023; May. 24(3):144–54.
Article
16. Mertens G, Van de Heyning P, Vanderveken O, Topsakal V, Van Rompaey V. The smaller the frequency-to-place mismatch the better the hearing outcomes in cochlear implant recipients. Eur Arch Otorhinolaryngol. 2022; Apr. 279(4):1875–83.
Article
17. Breitsprecher T, Mlynski R, Volter C, Van de Heyning P, Van Rompaey V, Dazert S, et al. Accuracy of preoperative cochlear duct length estimation and angular insertion depth prediction. Otol Neurotol. 2023; Sep. 44(8):e566–71.
Article
18. Rajan GP, Kontorinis G, Kuthubutheen J. The effects of insertion speed on inner ear function during cochlear implantation: a comparison study. Audiol Neurootol. 2013; 18(1):17–22.
Article
19. Kontorinis G, Lenarz T, Stover T, Paasche G. Impact of the insertion speed of cochlear implant electrodes on the insertion forces. Otol Neurotol. 2011; Jun. 32(4):565–70.
Article
20. Kaufmann CR, Henslee AM, Claussen A, Hansen MR. Evaluation of insertion forces and cochlea trauma following robotics-assisted cochlear implant electrode array insertion. Otol Neurotol. 2020; Jun. 41(5):631–8.
Article
21. Anschuetz L, Weder S, Mantokoudis G, Kompis M, Caversaccio M, Wimmer W. Cochlear implant insertion depth prediction: a temporal bone accuracy study. Otol Neurotol. 2018; Dec. 39(10):e996–1001.
Article
22. Riojas KE, Narasimhan N, Morrel W, Mitchell JE, Bruns TL, Webster RJ, et al. A new manual insertion tool for minimally invasive, image-guided cochlear implant surgery. In: Medical imaging 2019: image-guided procedures, robotic interventions, and modeling. 2019 Feb; 10951:122-8.
23. Sullivan CB, Al-Qurayshi Z, Zhu V, Liu A, Dunn C, Gantz BJ, et al. Long-term audiologic outcomes after cochlear implantation for single-sided deafness. Laryngoscope. 2020; Jul. 130(7):1805–11.
Article
24. Derieppe A, Gendre A, Bourget-Aguilar K, Bordure P, Michel G. Comparative study of vestibular function preservation in manual versus robotic-assisted cochlear implantation. Cochlear Implants Int. 2024; Jan. 25(1):23–7.
Article
25. Torres R, Daoudi H, Lahlou G, Sterkers O, Ferrary E, Mosnier I, et al. Restoration of high frequency auditory perception after robot-assisted or manual cochlear implantation in profoundly deaf adults improves speech recognition. Front Surg. 2021; Sep. 8:729736.
Article
Full Text Links
  • CEO
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr