Int J Stem Cells.  2025 Feb;18(1):1-11. 10.15283/ijsc23107.

Immune-Epithelial Cell Interactions during Epidermal Regeneration, Repair, and Inflammatory Diseases

Affiliations
  • 1Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
  • 2Cell and Molecular Biology Program, College of Natural Science, Michigan State University, East Lansing, MI, USA
  • 3Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
  • 4Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA

Abstract

The multiple layers of the skin cover and protect our entire body. Among the skin layers, the epidermis is in direct contact with the outer environment and serves as the first line of defense. The epidermis functions as a physical and immunological barrier. To maintain barrier function, the epidermis continually regenerates and repairs itself when injured. Interactions between tissue-resident immune cells and epithelial cells are essential to sustain epidermal regeneration and repair. In this review, we will dissect the crosstalk between epithelial cells and specific immune cell populations located in the epidermis during homeostasis and wound repair. In addition, we will analyze the contribution of dysregulated immune-epithelial interactions in chronic inflammatory diseases.

Keyword

Epidermis; Keratinocytes; Dendritic cells; Cell communication; Wound healing; Skin diseases

Figure

  • Fig. 1 Communication between keratinocytes and tissue-resident immune cells in epidermal homeostasis. Keratinocytes contribute to the recruitment of Langerhans cells (LCs), dendritic epidermal T cells (DETCs), and innate lymphoid cells (ILCs). In addition, keratinocytes retain LC, DETC and tissue-resident memory T (TRM) cell populations by promoting their survival in the epidermis. LCs epidermal presence is also maintained by downregulation of their migration and activation by keratinocyte-derived signaling. DETCs downregulate keratinocyte apoptosis to promote homeostasis. IGF-1: insulin-like growth factor 1, IL: interleukin, CCL: chemokine (C-C motif) ligand, TGF: transforming growth factor, BMP: bone morphogenetic protein, TSLP: thymic stromal lymphopoietin, TCR: T-cell receptor.

  • Fig. 2 Keratinocytes and tissue-resident immune cells cooperate during wound repair. Dendritic epidermal T cells (DETCs) and innate lymphoid cells (ILCs) promote wound repair by upregulating the proliferation and migration of keratinocytes. In return, damaged keratinocytes recruit ILCs and activate DETCs. Keratinocytes can regulate the immune response by recruiting Langerhans cells (LCs) and promoting their migration and immunotolerance. CCL: chemokine (C-C motif) ligand, IL: interleukin, KGF: keratinocyte growth factor, TNF: tumor necrosis factor.


Reference

References

1. Cockburn K, Annusver K, Gonzalez DG, et al. 2022; Gradual differentiation uncoupled from cell cycle exit generates heterogeneity in the epidermal stem cell layer. Nat Cell Biol. 24:1692–1700. DOI: 10.1038/s41556-022-01021-8. PMID: 36357619. PMCID: PMC9729105.
2. Simpson CL, Patel DM, Green KJ. 2011; Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol. 12:565–580. DOI: 10.1038/nrm3175. PMID: 21860392. PMCID: PMC3280198.
3. Kobayashi T, Naik S, Nagao K. 2019; Choreographing immunity in the skin epithelial barrier. Immunity. 50:552–565. DOI: 10.1016/j.immuni.2019.02.023. PMID: 30893586. PMCID: PMC6455972.
4. Tay SS, Roediger B, Tong PL, Tikoo S, Weninger W. 2013; The skin-resident immune network. Curr Dermatol Rep. 3:13–22. DOI: 10.1007/s13671-013-0063-9. PMID: 24587975. PMCID: PMC3931970.
5. Valladeau J, Ravel O, Dezutter-Dambuyant C, et al. 2000; Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity. 12:71–81. DOI: 10.1016/S1074-7613(00)80160-0. PMID: 10661407.
6. Hoeffel G, Wang Y, Greter M, et al. 2012; Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med. 209:1167–1181. DOI: 10.1084/jem.20120340. PMID: 22565823. PMCID: PMC3371735.
7. Chorro L, Sarde A, Li M, et al. 2009; Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med. 206:3089–3100. DOI: 10.1084/jem.20091586. PMID: 19995948. PMCID: PMC2806478.
8. Tang A, Amagai M, Granger LG, Stanley JR, Udey MC. 1993; Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature. 361:82–85. DOI: 10.1038/361082a0. PMID: 8421498.
9. Gaiser MR, Lämmermann T, Feng X, et al. 2012; Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. Proc Natl Acad Sci U S A. 109:E889–E897. Erratum in: Proc Natl Acad Sci U S A 2016;113:E2095. DOI: 10.1073/pnas.1117674109. PMID: 22411813. PMCID: PMC3326512.
10. Toulon A, Breton L, Taylor KR, et al. 2009; A role for human skin-resident T cells in wound healing. J Exp Med. 206:743–750. DOI: 10.1084/jem.20081787. PMID: 19307328. PMCID: PMC2715110.
11. Sutoh Y, Mohamed RH, Kasahara M. 2018; Origin and evolution of dendritic epidermal T cells. Front Immunol. 9:1059. DOI: 10.3389/fimmu.2018.01059. PMID: 29868019. PMCID: PMC5960712.
12. Xiong N, Kang C, Raulet DH. 2004; Positive selection of dendritic epidermal gammadelta T cell precursors in the fetal thymus determines expression of skin-homing receptors. Immunity. 21:121–131. DOI: 10.1016/j.immuni.2004.06.008. PMID: 15345225.
13. Matloubian M, Lo CG, Cinamon G, et al. 2004; Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 427:355–360. DOI: 10.1038/nature02284. PMID: 14737169.
14. Chen C, Meng Z, Ren H, et al. 2021; The molecular mechanisms supporting the homeostasis and activation of dendritic epidermal T cell and its role in promoting wound healing. Burns Trauma. 9:tkab009. DOI: 10.1093/burnst/tkab009. PMID: 34212060. PMCID: PMC8240510.
15. Gentek R, Ghigo C, Hoeffel G, et al. 2018; Epidermal γδ T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. J Exp Med. 215:2994–3005. DOI: 10.1084/jem.20181206. PMID: 30409784. PMCID: PMC6279412.
16. Watanabe R, Gehad A, Yang C, et al. 2015; Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med. 7:279ra39. DOI: 10.1126/scitranslmed.3010302.
17. Kok L, Masopust D, Schumacher TN. 2022; The precursors of CD8 tissue resident memory T cells: from lymphoid organs to infected tissues. Nat Rev Immunol. 22:283–293. DOI: 10.1038/s41577-021-00590-3. PMID: 34480118. PMCID: PMC8415193.
18. Mackay LK, Stock AT, Ma JZ, et al. 2012; Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc Natl Acad Sci U S A. 109:7037–7042. DOI: 10.1073/pnas.1202288109. PMID: 22509047. PMCID: PMC3344960.
19. Mackay LK, Rahimpour A, Ma JZ, et al. 2013; The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol. 14:1294–1301. DOI: 10.1038/ni.2744. PMID: 24162776.
20. Hirai T, Whitley SK, Kaplan DH. 2020; Migration and function of memory CD8 T cells in skin. J Invest Dermatol. 140:748–755. DOI: 10.1016/j.jid.2019.09.014. PMID: 31812277. PMCID: PMC7573784.
21. Zaid A, Mackay LK, Rahimpour A, et al. 2014; Persistence of skin-resident memory T cells within an epidermal niche. Proc Natl Acad Sci U S A. 111:5307–5312. DOI: 10.1073/pnas.1322292111. PMID: 24706879. PMCID: PMC3986170.
22. Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS. 2012; Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature. 483:227–231. DOI: 10.1038/nature10851. PMID: 22388819. PMCID: PMC3437663.
23. Gadsbøll AØ, Jee MH, Funch AB, et al. 2020; Pathogenic CD8 epidermis-resident memory T cells displace dendritic epidermal T cells in allergic dermatitis. J Invest Dermatol. 140:806–815.e5. DOI: 10.1016/j.jid.2019.07.722. PMID: 31518559.
24. Kobayashi T, Voisin B, Kim DY, et al. 2019; Homeostatic control of sebaceous glands by innate lymphoid cells regulates commensal bacteria equilibrium. Cell. 176:982–997.e16. DOI: 10.1016/j.cell.2018.12.031. PMID: 30712873. PMCID: PMC6532063.
25. Spits H, Artis D, Colonna M, et al. 2013; Innate lymphoid cells--a proposal for uniform nomenclature. Nat Rev Immunol. 13:145–149. DOI: 10.1038/nri3365. PMID: 23348417.
26. Gronke K, Kofoed-Nielsen M, Diefenbach A. 2016; Innate lymphoid cells, precursors and plasticity. Immunol Lett. 179:9–18. DOI: 10.1016/j.imlet.2016.07.004. PMID: 27394700.
27. Greter M, Lelios I, Pelczar P, et al. 2012; Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity. 37:1050–1060. DOI: 10.1016/j.immuni.2012.11.001. PMID: 23177320. PMCID: PMC4291117.
28. Wang Y, Szretter KJ, Vermi W, et al. 2012; IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol. 13:753–760. DOI: 10.1038/ni.2360. PMID: 22729249. PMCID: PMC3941469.
29. Nakamura K, Williams IR, Kupper TS. 1995; Keratinocyte-derived monocyte chemoattractant protein 1 (MCP-1): analysis in a transgenic model demonstrates MCP-1 can recruit dendritic and Langerhans cells to skin. J Invest Dermatol. 105:635–643. DOI: 10.1111/1523-1747.ep12324061. PMID: 7594634.
30. Park S, Matte-Martone C, Gonzalez DG, et al. 2021; Skin-resident immune cells actively coordinate their distribution with epidermal cells during homeostasis. Nat Cell Biol. 23:476–484. DOI: 10.1038/s41556-021-00670-5. PMID: 33958758. PMCID: PMC8603572.
31. Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. 2009; External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med. 206:2937–2946. DOI: 10.1084/jem.20091527. PMID: 19995951. PMCID: PMC2806471.
32. Rattis FM, Péguet-Navarro J, Staquet MJ, et al. 1996; Expression and function of B7-1 (CD80) and B7-2 (CD86) on human epidermal Langerhans cells. Eur J Immunol. 26:449–453. DOI: 10.1002/eji.1830260227. PMID: 8617317.
33. Jiang A, Bloom O, Ono S, et al. 2007; Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity. 27:610–624. DOI: 10.1016/j.immuni.2007.08.015. PMID: 17936032. PMCID: PMC2151979.
34. Ouchi T, Nakato G, Udey MC. 2016; EpCAM expressed by murine epidermal Langerhans cells modulates immunization to an epicutaneously applied protein antigen. J Invest Dermatol. 136:1627–1635. DOI: 10.1016/j.jid.2016.04.005. PMID: 27106675. PMCID: PMC4958526.
35. Brand A, Diener N, Zahner SP, et al. 2020; E-cadherin is dispensable to maintain Langerhans cells in the epidermis. J Invest Dermatol. 140:132–142.e3. DOI: 10.1016/j.jid.2019.06.132. PMID: 31260672.
36. Phan TS, Schink L, Mann J, et al. 2021; Sci Adv. 7:eabe0337. DOI: 10.1126/sciadv.abe0337. PMID: 33514551. PMCID: PMC7846173.
37. Kel JM, Girard-Madoux MJ, Reizis B, Clausen BE. 2010; TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J Immunol. 185:3248–3255. DOI: 10.4049/jimmunol.1000981. PMID: 20713882.
38. Kaplan DH, Li MO, Jenison MC, Shlomchik WD, Flavell RA, Shlomchik MJ. 2007; Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. J Exp Med. 204:2545–2552. DOI: 10.1084/jem.20071401. PMID: 17938236. PMCID: PMC2118472.
39. Yasmin N, Konradi S, Eisenwort G, et al. 2013; β-Catenin promotes the differentiation of epidermal Langerhans dendritic cells. J Invest Dermatol. 133:1250–1259. DOI: 10.1038/jid.2012.481. PMID: 23303458.
40. Yasmin N, Bauer T, Modak M, et al. 2013; Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J Exp Med. 210:2597–2610. DOI: 10.1084/jem.20130275. PMID: 24190429. PMCID: PMC3832935.
41. Boyden LM, Lewis JM, Barbee SD, et al. 2008; Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet. 40:656–662. DOI: 10.1038/ng.108. PMID: 18408721. PMCID: PMC4167720.
42. Jiang X, Campbell JJ, Kupper TS. 2010; Embryonic trafficking of gammadelta T cells to skin is dependent on E/P selectin ligands and CCR4. Proc Natl Acad Sci U S A. 107:7443–7448. DOI: 10.1073/pnas.0912943107. PMID: 20368416. PMCID: PMC2867765.
43. Jin Y, Xia M, Sun A, Saylor CM, Xiong N. 2010; CCR10 is important for the development of skin-specific gammadeltaT cells by regulating their migration and location. J Immunol. 185:5723–5731. DOI: 10.4049/jimmunol.1001612. PMID: 20937851. PMCID: PMC3037513.
44. De Creus A, Van Beneden K, Stevenaert F, Debacker V, Plum J, Leclercq G. 2002; Developmental and functional defects of thymic and epidermal V gamma 3 cells in IL-15-deficient and IFN regulatory factor-1-deficient mice. J Immunol. 168:6486–6493. DOI: 10.4049/jimmunol.168.12.6486. PMID: 12055269.
45. Maki K, Sunaga S, Ikuta K. 1996; The V-J recombination of T cell receptor-gamma genes is blocked in interleukin-7 receptor-deficient mice. J Exp Med. 184:2423–2427. DOI: 10.1084/jem.184.6.2423. PMID: 8976198. PMCID: PMC2196379.
46. Park SY, Saijo K, Takahashi T, et al. 1995; Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity. 3:771–782. DOI: 10.1016/1074-7613(95)90066-7. PMID: 8777722.
47. Kang J, DiBenedetto B, Narayan K, Zhao H, Der SD, Chambers CA. 2004; STAT5 is required for thymopoiesis in a development stage-specific manner. J Immunol. 173:2307–2314. DOI: 10.4049/jimmunol.173.4.2307. PMID: 15294943.
48. Schlickum S, Sennefelder H, Friedrich M, et al. 2008; Integrin alpha E(CD103)beta 7 influences cellular shape and motility in a ligand-dependent fashion. Blood. 112:619–625. DOI: 10.1182/blood-2008-01-134833. PMID: 18492951.
49. Chodaczek G, Papanna V, Zal MA, Zal T. 2012; Body-barrier surveillance by epidermal γδ TCRs. Nat Immunol. 13:272–282. DOI: 10.1038/ni.2240. PMID: 22327568. PMCID: PMC3288780.
50. Uchida Y, Kawai K, Ibusuki A, Kanekura T. 2011; Role for E-cadherin as an inhibitory receptor on epidermal gammadelta T cells. J Immunol. 186:6945–6954. DOI: 10.4049/jimmunol.1003853. PMID: 21562159.
51. Saito T, Yano M, Ohki Y, Tomura M, Nakano N. 2017; Occludin expression in epidermal γδ T cells in response to epidermal stress causes them to migrate into draining lymph nodes. J Immunol. 199:62–71. DOI: 10.4049/jimmunol.1600848. PMID: 28566372.
52. Jameson J, Ugarte K, Chen N, et al. 2002; A role for skin gammadelta T cells in wound repair. Science. 296:747–749. DOI: 10.1126/science.1069639. PMID: 11976459.
53. Sharp LL, Jameson JM, Cauvi G, Havran WL. 2005; Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat Immunol. 6:73–79. DOI: 10.1038/ni1152. PMID: 15592472.
54. Wang Y, Bai Y, Li Y, et al. 2017; IL-15 enhances activation and IGF-1 production of dendritic epidermal T cells to promote wound healing in diabetic mice. Front Immunol. 8:1557. DOI: 10.3389/fimmu.2017.01557. PMID: 29225596. PMCID: PMC5705622.
55. Gaide O, Emerson RO, Jiang X, et al. 2015; Common clonal origin of central and resident memory T cells following skin immunization. Nat Med. 21:647–653. DOI: 10.1038/nm.3860. PMID: 25962122. PMCID: PMC4632197.
56. Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC. 2013; Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat Immunol. 14:1285–1293. DOI: 10.1038/ni.2745. PMID: 24162775. PMCID: PMC3844557.
57. Hirai T, Zenke Y, Yang Y, et al. 2019; Keratinocyte-mediated activation of the cytokine TGF-β maintains skin recirculating memory CD8 T cells. Immunity. 50:1249–1261.e5. DOI: 10.1016/j.immuni.2019.03.002. PMID: 30952606. PMCID: PMC6531326.
58. Fonseca R, Burn TN, Gandolfo LC, et al. 2022; Runx3 drives a CD8 T cell tissue residency program that is absent in CD4 T cells. Nat Immunol. 23:1236–1245. DOI: 10.1038/s41590-022-01273-4. PMID: 35882933.
59. Milner JJ, Toma C, Yu B, et al. 2017; Runx3 programs CD8 T cell residency in non-lymphoid tissues and tumours. Nature. 552:253–257. DOI: 10.1038/nature24993. PMID: 29211713. PMCID: PMC5747964.
60. Pan Y, Tian T, Park CO, et al. 2017; Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature. 543:252–256. DOI: 10.1038/nature21379. PMID: 28219080. PMCID: PMC5509051.
61. Adachi T, Kobayashi T, Sugihara E, et al. 2015; Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 21:1272–1279. DOI: 10.1038/nm.3962. PMID: 26479922. PMCID: PMC4636445.
62. Ariotti S, Beltman JB, Chodaczek G, et al. 2012; Tissue-resident memory CD8 T cells continuously patrol skin epithelia to quickly recognize local antigen. Proc Natl Acad Sci U S A. 109:19739–19744. DOI: 10.1073/pnas.1208927109. PMID: 23150545. PMCID: PMC3511734.
63. Zaid A, Hor JL, Christo SN, et al. 2017; Chemokine receptor-dependent control of skin tissue-resident memory T cell formation. J Immunol. 199:2451–2459. DOI: 10.4049/jimmunol.1700571. PMID: 28855310.
64. Gurtner GC, Werner S, Barrandon Y, Longaker MT. 2008; Wound repair and regeneration. Nature. 453:314–321. DOI: 10.1038/nature07039. PMID: 18480812.
65. Park S, Gonzalez DG, Guirao B, et al. 2017; Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice. Nat Cell Biol. 19:155–163. Erratum in: Nat Cell Biol 2017;19:407. DOI: 10.1038/ncb3472. PMID: 28248302. PMCID: PMC5581297.
66. Roake JA, Rao AS, Morris PJ, Larsen CP, Hankins DF, Austyn JM. 1995; Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1. J Exp Med. 181:2237–2247. DOI: 10.1084/jem.181.6.2237. PMID: 7760009. PMCID: PMC2192059.
67. Nagao K, Kobayashi T, Moro K, et al. 2012; Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol. 13:744–752. DOI: 10.1038/ni.2353. PMID: 22729248. PMCID: PMC4115277.
68. Liu X, Zhang X, Zhang J, et al. 2020; Activation of aryl hydrocarbon receptor in Langerhans cells by a microbial metabolite of tryptophan negatively regulates skin inflammation. J Dermatol Sci. 100:192–200. DOI: 10.1016/j.jdermsci.2020.10.004. PMID: 33082071.
69. Rajesh A, Stuart G, Real N, et al. 2020; Depletion of langerin cells enhances cutaneous wound healing. Immunology. 160:366–381. DOI: 10.1111/imm.13202. PMID: 32307696. PMCID: PMC7370135.
70. Li Z, Lamb R, Coles MC, Bennett CL, Ambler CA. 2021; Inducible ablation of CD11c cells to determine their role in skin wound repair. Immunology. 163:105–111. DOI: 10.1111/imm.13312. PMID: 33502012. PMCID: PMC8044329.
71. Wasko R, Bridges K, Pannone R, et al. 2022; Langerhans cells are essential components of the angiogenic niche during murine skin repair. Dev Cell. 57:2699–2713.e5. DOI: 10.1016/j.devcel.2022.11.012. PMID: 36493773. PMCID: PMC10848275.
72. Joshi N, Pohlmeier L, Ben-Yehuda Greenwald M, et al. 2020; Comprehensive characterization of myeloid cells during wound healing in healthy and healing-impaired diabetic mice. Eur J Immunol. 50:1335–1349. DOI: 10.1002/eji.201948438. PMID: 32306381. PMCID: PMC7496577.
73. Stojadinovic O, Yin N, Lehmann J, Pastar I, Kirsner RS, Tomic-Canic M. 2013; Increased number of Langerhans cells in the epidermis of diabetic foot ulcers correlates with healing outcome. Immunol Res. 57:222–228. DOI: 10.1007/s12026-013-8474-z. PMID: 24277309. PMCID: PMC4349345.
74. Komori HK, Witherden DA, Kelly R, et al. 2012; Cutting edge: dendritic epidermal γδ T cell ligands are rapidly and locally expressed by keratinocytes following cutaneous wounding. J Immunol. 188:2972–2976. DOI: 10.4049/jimmunol.1100887. PMID: 22393149. PMCID: PMC3311739.
75. Keyes BE, Liu S, Asare A, et al. 2016; Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin. Cell. 167:1323–1338.e14. DOI: 10.1016/j.cell.2016.10.052. PMID: 27863246. PMCID: PMC5364946.
76. Witherden DA, Watanabe M, Garijo O, et al. 2012; The CD100 receptor interacts with its plexin B2 ligand to regulate epidermal γδ T cell function. Immunity. 37:314–325. DOI: 10.1016/j.immuni.2012.05.026. PMID: 22902232. PMCID: PMC3430606.
77. Zhang C, Xiao C, Dang E, et al. 2018; CD100-plexin-B2 promotes the inflammation in psoriasis by activating NF-κB and the inflammasome in keratinocytes. J Invest Dermatol. 138:375–383. DOI: 10.1016/j.jid.2017.09.005. PMID: 28927892.
78. Wang F, Liu B, Yu Z, et al. 2018; Effects of CD100 promote wound healing in diabetic mice. J Mol Histol. 49:277–287. DOI: 10.1007/s10735-018-9767-2. PMID: 29637382.
79. Strid J, Sobolev O, Zafirova B, Polic B, Hayday A. 2011; The intraepithelial T cell response to NKG2D-ligands links lymphoid stress surveillance to atopy. Science. 334:1293–1297. DOI: 10.1126/science.1211250. PMID: 22144628. PMCID: PMC3842529.
80. Dalessandri T, Crawford G, Hayes M, Castro Seoane R, Strid J. 2016; IL-13 from intraepithelial lymphocytes regulates tissue homeostasis and protects against carcinogenesis in the skin. Nat Commun. 7:12080. DOI: 10.1038/ncomms12080. PMID: 27357235. PMCID: PMC4931319.
81. Ricardo-Gonzalez RR, Van Dyken SJ, Schneider C, et al. 2018; Tissue signals imprint ILC2 identity with anticipatory function. Nat Immunol. 19:1093–1099. DOI: 10.1038/s41590-018-0201-4. PMID: 30201992. PMCID: PMC6202223.
82. Rak GD, Osborne LC, Siracusa MC, et al. 2016; IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing. J Invest Dermatol. 136:487–496. DOI: 10.1038/JID.2015.406. PMID: 26802241. PMCID: PMC4731037.
83. Li Z, Hodgkinson T, Gothard EJ, et al. 2016; Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat Commun. 7:11394. DOI: 10.1038/ncomms11394. PMID: 27099134. PMCID: PMC4844683.
84. Yamanaka K, Yamamoto O, Honda T. 2021; Pathophysiology of psoriasis: a review. J Dermatol. 48:722–731. DOI: 10.1111/1346-8138.15913. PMID: 33886133.
85. Das P, Mounika P, Yellurkar ML, et al. 2022; Keratinocytes: an enigmatic factor in atopic dermatitis. Cells. 11:1683. DOI: 10.3390/cells11101683. PMID: 35626720. PMCID: PMC9139464.
86. Yoshida K, Kubo A, Fujita H, et al. 2014; Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J Allergy Clin Immunol. 134:856–864. DOI: 10.1016/j.jaci.2014.08.001. PMID: 25282566.
87. Leitch CS, Natafji E, Yu C, et al. 2016; Filaggrin-null mutations are associated with increased maturation markers on Langerhans cells. J Allergy Clin Immunol. 138:482–490.e7. DOI: 10.1016/j.jaci.2015.11.040. PMID: 26934939. PMCID: PMC5422581.
88. Elentner A, Finke D, Schmuth M, et al. 2009; Langerhans cells are critical in the development of atopic dermatitis-like inflammation and symptoms in mice. J Cell Mol Med. 13:2658–2672. DOI: 10.1111/j.1582-4934.2009.00797.x. PMID: 19538461. PMCID: PMC8183941.
89. Sulcova J, Maddaluno L, Meyer M, Werner S. 2015; Accumulation and activation of epidermal γδ T cells in a mouse model of chronic dermatitis is not required for the inflammatory phenotype. Eur J Immunol. 45:2517–2528. DOI: 10.1002/eji.201545675. PMID: 26081170.
90. Khalil S, Bardawil T, Kurban M, Abbas O. 2020; Tissue-resident memory T cells in the skin. Inflamm Res. 69:245–254. DOI: 10.1007/s00011-020-01320-6. PMID: 31989191.
91. Brunner PM, Emerson RO, Tipton C, et al. 2017; Nonlesional atopic dermatitis skin shares similar T-cell clones with lesional tissues. Allergy. 72:2017–2025. DOI: 10.1111/all.13223. PMID: 28599078.
92. Salimi M, Barlow JL, Saunders SP, et al. 2013; A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 210:2939–2950. DOI: 10.1084/jem.20130351. PMID: 24323357. PMCID: PMC3865470.
93. Dainichi T, Kitoh A, Otsuka A, et al. 2018; The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol. 19:1286–1298. DOI: 10.1038/s41590-018-0256-2. PMID: 30446754.
94. Nakajima K, Kataoka S, Sato K, et al. 2019; Stat3 activation in epidermal keratinocytes induces Langerhans cell activation to form an essential circuit for psoriasis via IL-23 production. J Dermatol Sci. 93:82–91. DOI: 10.1016/j.jdermsci.2018.11.007. PMID: 30514663.
95. Yoshiki R, Kabashima K, Honda T, et al. 2014; IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing γδ T cells. J Invest Dermatol. 134:1912–1921. DOI: 10.1038/jid.2014.98. PMID: 24569709.
96. Eaton LH, Mellody KT, Pilkington SM, Dearman RJ, Kimber I, Griffiths CEM. 2018; Impaired Langerhans cell migration in psoriasis is due to an altered keratinocyte phenotype induced by interleukin-17. Br J Dermatol. 178:1364–1372. DOI: 10.1111/bjd.16172. PMID: 29194565.
97. Cumberbatch M, Singh M, Dearman RJ, Young HS, Kimber I, Griffiths CE. 2006; Impaired Langerhans cell migration in psoriasis. J Exp Med. 203:953–960. DOI: 10.1084/jem.20052367. PMID: 16567387. PMCID: PMC2118293.
98. Yeh CY, Su SH, Tan YF, et al. 2023; PD-L1 enhanced by cis-urocanic acid on Langerhans cells inhibits Vγ4 γδT17 cells in imiquimod-induced skin inflammation. J Invest Dermatol. 143:1449–1460. DOI: 10.1016/j.jid.2023.02.018. PMID: 36868499.
99. Castillo-González R, Cibrian D, Sánchez-Madrid F. 2021; Dissecting the complexity of γδ T-cell subsets in skin homeostasis, inflammation, and malignancy. J Allergy Clin Immunol. 147:2030–2042. DOI: 10.1016/j.jaci.2020.11.023. PMID: 33259837.
100. Chen L, Shen Z. 2020; Tissue-resident memory T cells and their biological characteristics in the recurrence of inflammatory skin disorders. Cell Mol Immunol. 17:64–75. DOI: 10.1038/s41423-019-0291-4. PMID: 31595056. PMCID: PMC6952397.
101. Cibrian D, Saiz ML, de la Fuente H, et al. 2016; CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nat Immunol. 17:985–996. Erratum in: Nat Immunol 2016;17:1235. DOI: 10.1038/ni.3504. PMID: 27376471. PMCID: PMC5146640.
102. Teunissen MBM, Munneke JM, Bernink JH, et al. 2014; Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol. 134:2351–2360. DOI: 10.1038/jid.2014.146. PMID: 24658504.
103. Bernink JH, Ohne Y, Teunissen MBM, et al. 2019; c-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nat Immunol. 20:992–1003. Erratum in: Nat Immunol 2020;21:101. DOI: 10.1038/s41590-019-0554-3. PMID: 31723260.
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr