1. Cockburn K, Annusver K, Gonzalez DG, et al. 2022; Gradual differentiation uncoupled from cell cycle exit generates heterogeneity in the epidermal stem cell layer. Nat Cell Biol. 24:1692–1700. DOI:
10.1038/s41556-022-01021-8. PMID:
36357619. PMCID:
PMC9729105.
2. Simpson CL, Patel DM, Green KJ. 2011; Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol. 12:565–580. DOI:
10.1038/nrm3175. PMID:
21860392. PMCID:
PMC3280198.
5. Valladeau J, Ravel O, Dezutter-Dambuyant C, et al. 2000; Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity. 12:71–81. DOI:
10.1016/S1074-7613(00)80160-0. PMID:
10661407.
6. Hoeffel G, Wang Y, Greter M, et al. 2012; Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med. 209:1167–1181. DOI:
10.1084/jem.20120340. PMID:
22565823. PMCID:
PMC3371735.
7. Chorro L, Sarde A, Li M, et al. 2009; Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med. 206:3089–3100. DOI:
10.1084/jem.20091586. PMID:
19995948. PMCID:
PMC2806478.
8. Tang A, Amagai M, Granger LG, Stanley JR, Udey MC. 1993; Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature. 361:82–85. DOI:
10.1038/361082a0. PMID:
8421498.
9. Gaiser MR, Lämmermann T, Feng X, et al. 2012; Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration
in vivo. Proc Natl Acad Sci U S A. 109:E889–E897. Erratum in: Proc Natl Acad Sci U S A 2016;113:E2095. DOI:
10.1073/pnas.1117674109. PMID:
22411813. PMCID:
PMC3326512.
10. Toulon A, Breton L, Taylor KR, et al. 2009; A role for human skin-resident T cells in wound healing. J Exp Med. 206:743–750. DOI:
10.1084/jem.20081787. PMID:
19307328. PMCID:
PMC2715110.
12. Xiong N, Kang C, Raulet DH. 2004; Positive selection of dendritic epidermal gammadelta T cell precursors in the fetal thymus determines expression of skin-homing receptors. Immunity. 21:121–131. DOI:
10.1016/j.immuni.2004.06.008. PMID:
15345225.
13. Matloubian M, Lo CG, Cinamon G, et al. 2004; Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 427:355–360. DOI:
10.1038/nature02284. PMID:
14737169.
14. Chen C, Meng Z, Ren H, et al. 2021; The molecular mechanisms supporting the homeostasis and activation of dendritic epidermal T cell and its role in promoting wound healing. Burns Trauma. 9:tkab009. DOI:
10.1093/burnst/tkab009. PMID:
34212060. PMCID:
PMC8240510.
15. Gentek R, Ghigo C, Hoeffel G, et al. 2018; Epidermal γδ T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. J Exp Med. 215:2994–3005. DOI:
10.1084/jem.20181206. PMID:
30409784. PMCID:
PMC6279412.
16. Watanabe R, Gehad A, Yang C, et al. 2015; Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med. 7:279ra39. DOI:
10.1126/scitranslmed.3010302.
17. Kok L, Masopust D, Schumacher TN. 2022; The precursors of CD8
+ tissue resident memory T cells: from lymphoid organs to infected tissues. Nat Rev Immunol. 22:283–293. DOI:
10.1038/s41577-021-00590-3. PMID:
34480118. PMCID:
PMC8415193.
18. Mackay LK, Stock AT, Ma JZ, et al. 2012; Long-lived epithelial immunity by tissue-resident memory T (T
RM) cells in the absence of persisting local antigen presentation. Proc Natl Acad Sci U S A. 109:7037–7042. DOI:
10.1073/pnas.1202288109. PMID:
22509047. PMCID:
PMC3344960.
19. Mackay LK, Rahimpour A, Ma JZ, et al. 2013; The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol. 14:1294–1301. DOI:
10.1038/ni.2744. PMID:
24162776.
21. Zaid A, Mackay LK, Rahimpour A, et al. 2014; Persistence of skin-resident memory T cells within an epidermal niche. Proc Natl Acad Sci U S A. 111:5307–5312. DOI:
10.1073/pnas.1322292111. PMID:
24706879. PMCID:
PMC3986170.
22. Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS. 2012; Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature. 483:227–231. DOI:
10.1038/nature10851. PMID:
22388819. PMCID:
PMC3437663.
23. Gadsbøll AØ, Jee MH, Funch AB, et al. 2020; Pathogenic CD8
+ epidermis-resident memory T cells displace dendritic epidermal T cells in allergic dermatitis. J Invest Dermatol. 140:806–815.e5. DOI:
10.1016/j.jid.2019.07.722. PMID:
31518559.
24. Kobayashi T, Voisin B, Kim DY, et al. 2019; Homeostatic control of sebaceous glands by innate lymphoid cells regulates commensal bacteria equilibrium. Cell. 176:982–997.e16. DOI:
10.1016/j.cell.2018.12.031. PMID:
30712873. PMCID:
PMC6532063.
25. Spits H, Artis D, Colonna M, et al. 2013; Innate lymphoid cells--a proposal for uniform nomenclature. Nat Rev Immunol. 13:145–149. DOI:
10.1038/nri3365. PMID:
23348417.
26. Gronke K, Kofoed-Nielsen M, Diefenbach A. 2016; Innate lymphoid cells, precursors and plasticity. Immunol Lett. 179:9–18. DOI:
10.1016/j.imlet.2016.07.004. PMID:
27394700.
27. Greter M, Lelios I, Pelczar P, et al. 2012; Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity. 37:1050–1060. DOI:
10.1016/j.immuni.2012.11.001. PMID:
23177320. PMCID:
PMC4291117.
28. Wang Y, Szretter KJ, Vermi W, et al. 2012; IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol. 13:753–760. DOI:
10.1038/ni.2360. PMID:
22729249. PMCID:
PMC3941469.
29. Nakamura K, Williams IR, Kupper TS. 1995; Keratinocyte-derived monocyte chemoattractant protein 1 (MCP-1): analysis in a transgenic model demonstrates MCP-1 can recruit dendritic and Langerhans cells to skin. J Invest Dermatol. 105:635–643. DOI:
10.1111/1523-1747.ep12324061. PMID:
7594634.
30. Park S, Matte-Martone C, Gonzalez DG, et al. 2021; Skin-resident immune cells actively coordinate their distribution with epidermal cells during homeostasis. Nat Cell Biol. 23:476–484. DOI:
10.1038/s41556-021-00670-5. PMID:
33958758. PMCID:
PMC8603572.
31. Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. 2009; External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med. 206:2937–2946. DOI:
10.1084/jem.20091527. PMID:
19995951. PMCID:
PMC2806471.
32. Rattis FM, Péguet-Navarro J, Staquet MJ, et al. 1996; Expression and function of B7-1 (CD80) and B7-2 (CD86) on human epidermal Langerhans cells. Eur J Immunol. 26:449–453. DOI:
10.1002/eji.1830260227. PMID:
8617317.
33. Jiang A, Bloom O, Ono S, et al. 2007; Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity. 27:610–624. DOI:
10.1016/j.immuni.2007.08.015. PMID:
17936032. PMCID:
PMC2151979.
34. Ouchi T, Nakato G, Udey MC. 2016; EpCAM expressed by murine epidermal Langerhans cells modulates immunization to an epicutaneously applied protein antigen. J Invest Dermatol. 136:1627–1635. DOI:
10.1016/j.jid.2016.04.005. PMID:
27106675. PMCID:
PMC4958526.
35. Brand A, Diener N, Zahner SP, et al. 2020; E-cadherin is dispensable to maintain Langerhans cells in the epidermis. J Invest Dermatol. 140:132–142.e3. DOI:
10.1016/j.jid.2019.06.132. PMID:
31260672.
37. Kel JM, Girard-Madoux MJ, Reizis B, Clausen BE. 2010; TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J Immunol. 185:3248–3255. DOI:
10.4049/jimmunol.1000981. PMID:
20713882.
38. Kaplan DH, Li MO, Jenison MC, Shlomchik WD, Flavell RA, Shlomchik MJ. 2007; Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. J Exp Med. 204:2545–2552. DOI:
10.1084/jem.20071401. PMID:
17938236. PMCID:
PMC2118472.
39. Yasmin N, Konradi S, Eisenwort G, et al. 2013; β-Catenin promotes the differentiation of epidermal Langerhans dendritic cells. J Invest Dermatol. 133:1250–1259. DOI:
10.1038/jid.2012.481. PMID:
23303458.
40. Yasmin N, Bauer T, Modak M, et al. 2013; Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J Exp Med. 210:2597–2610. DOI:
10.1084/jem.20130275. PMID:
24190429. PMCID:
PMC3832935.
41. Boyden LM, Lewis JM, Barbee SD, et al. 2008; Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet. 40:656–662. DOI:
10.1038/ng.108. PMID:
18408721. PMCID:
PMC4167720.
42. Jiang X, Campbell JJ, Kupper TS. 2010; Embryonic trafficking of gammadelta T cells to skin is dependent on E/P selectin ligands and CCR4. Proc Natl Acad Sci U S A. 107:7443–7448. DOI:
10.1073/pnas.0912943107. PMID:
20368416. PMCID:
PMC2867765.
43. Jin Y, Xia M, Sun A, Saylor CM, Xiong N. 2010; CCR10 is important for the development of skin-specific gammadeltaT cells by regulating their migration and location. J Immunol. 185:5723–5731. DOI:
10.4049/jimmunol.1001612. PMID:
20937851. PMCID:
PMC3037513.
44. De Creus A, Van Beneden K, Stevenaert F, Debacker V, Plum J, Leclercq G. 2002; Developmental and functional defects of thymic and epidermal V gamma 3 cells in IL-15-deficient and IFN regulatory factor-1-deficient mice. J Immunol. 168:6486–6493. DOI:
10.4049/jimmunol.168.12.6486. PMID:
12055269.
45. Maki K, Sunaga S, Ikuta K. 1996; The V-J recombination of T cell receptor-gamma genes is blocked in interleukin-7 receptor-deficient mice. J Exp Med. 184:2423–2427. DOI:
10.1084/jem.184.6.2423. PMID:
8976198. PMCID:
PMC2196379.
46. Park SY, Saijo K, Takahashi T, et al. 1995; Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity. 3:771–782. DOI:
10.1016/1074-7613(95)90066-7. PMID:
8777722.
47. Kang J, DiBenedetto B, Narayan K, Zhao H, Der SD, Chambers CA. 2004; STAT5 is required for thymopoiesis in a development stage-specific manner. J Immunol. 173:2307–2314. DOI:
10.4049/jimmunol.173.4.2307. PMID:
15294943.
48. Schlickum S, Sennefelder H, Friedrich M, et al. 2008; Integrin alpha E(CD103)beta 7 influences cellular shape and motility in a ligand-dependent fashion. Blood. 112:619–625. DOI:
10.1182/blood-2008-01-134833. PMID:
18492951.
49. Chodaczek G, Papanna V, Zal MA, Zal T. 2012; Body-barrier surveillance by epidermal γδ TCRs. Nat Immunol. 13:272–282. DOI:
10.1038/ni.2240. PMID:
22327568. PMCID:
PMC3288780.
50. Uchida Y, Kawai K, Ibusuki A, Kanekura T. 2011; Role for E-cadherin as an inhibitory receptor on epidermal gammadelta T cells. J Immunol. 186:6945–6954. DOI:
10.4049/jimmunol.1003853. PMID:
21562159.
51. Saito T, Yano M, Ohki Y, Tomura M, Nakano N. 2017; Occludin expression in epidermal γδ T cells in response to epidermal stress causes them to migrate into draining lymph nodes. J Immunol. 199:62–71. DOI:
10.4049/jimmunol.1600848. PMID:
28566372.
52. Jameson J, Ugarte K, Chen N, et al. 2002; A role for skin gammadelta T cells in wound repair. Science. 296:747–749. DOI:
10.1126/science.1069639. PMID:
11976459.
53. Sharp LL, Jameson JM, Cauvi G, Havran WL. 2005; Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat Immunol. 6:73–79. DOI:
10.1038/ni1152. PMID:
15592472.
54. Wang Y, Bai Y, Li Y, et al. 2017; IL-15 enhances activation and IGF-1 production of dendritic epidermal T cells to promote wound healing in diabetic mice. Front Immunol. 8:1557. DOI:
10.3389/fimmu.2017.01557. PMID:
29225596. PMCID:
PMC5705622.
55. Gaide O, Emerson RO, Jiang X, et al. 2015; Common clonal origin of central and resident memory T cells following skin immunization. Nat Med. 21:647–653. DOI:
10.1038/nm.3860. PMID:
25962122. PMCID:
PMC4632197.
56. Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC. 2013; Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat Immunol. 14:1285–1293. DOI:
10.1038/ni.2745. PMID:
24162775. PMCID:
PMC3844557.
57. Hirai T, Zenke Y, Yang Y, et al. 2019; Keratinocyte-mediated activation of the cytokine TGF-β maintains skin recirculating memory CD8
+ T cells. Immunity. 50:1249–1261.e5. DOI:
10.1016/j.immuni.2019.03.002. PMID:
30952606. PMCID:
PMC6531326.
58. Fonseca R, Burn TN, Gandolfo LC, et al. 2022; Runx3 drives a CD8
+ T cell tissue residency program that is absent in CD4
+ T cells. Nat Immunol. 23:1236–1245. DOI:
10.1038/s41590-022-01273-4. PMID:
35882933.
59. Milner JJ, Toma C, Yu B, et al. 2017; Runx3 programs CD8
+ T cell residency in non-lymphoid tissues and tumours. Nature. 552:253–257. DOI:
10.1038/nature24993. PMID:
29211713. PMCID:
PMC5747964.
60. Pan Y, Tian T, Park CO, et al. 2017; Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature. 543:252–256. DOI:
10.1038/nature21379. PMID:
28219080. PMCID:
PMC5509051.
61. Adachi T, Kobayashi T, Sugihara E, et al. 2015; Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 21:1272–1279. DOI:
10.1038/nm.3962. PMID:
26479922. PMCID:
PMC4636445.
62. Ariotti S, Beltman JB, Chodaczek G, et al. 2012; Tissue-resident memory CD8
+ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proc Natl Acad Sci U S A. 109:19739–19744. DOI:
10.1073/pnas.1208927109. PMID:
23150545. PMCID:
PMC3511734.
63. Zaid A, Hor JL, Christo SN, et al. 2017; Chemokine receptor-dependent control of skin tissue-resident memory T cell formation. J Immunol. 199:2451–2459. DOI:
10.4049/jimmunol.1700571. PMID:
28855310.
64. Gurtner GC, Werner S, Barrandon Y, Longaker MT. 2008; Wound repair and regeneration. Nature. 453:314–321. DOI:
10.1038/nature07039. PMID:
18480812.
65. Park S, Gonzalez DG, Guirao B, et al. 2017; Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice. Nat Cell Biol. 19:155–163. Erratum in: Nat Cell Biol 2017;19:407. DOI:
10.1038/ncb3472. PMID:
28248302. PMCID:
PMC5581297.
66. Roake JA, Rao AS, Morris PJ, Larsen CP, Hankins DF, Austyn JM. 1995; Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1. J Exp Med. 181:2237–2247. DOI:
10.1084/jem.181.6.2237. PMID:
7760009. PMCID:
PMC2192059.
67. Nagao K, Kobayashi T, Moro K, et al. 2012; Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol. 13:744–752. DOI:
10.1038/ni.2353. PMID:
22729248. PMCID:
PMC4115277.
68. Liu X, Zhang X, Zhang J, et al. 2020; Activation of aryl hydrocarbon receptor in Langerhans cells by a microbial metabolite of tryptophan negatively regulates skin inflammation. J Dermatol Sci. 100:192–200. DOI:
10.1016/j.jdermsci.2020.10.004. PMID:
33082071.
69. Rajesh A, Stuart G, Real N, et al. 2020; Depletion of langerin
+ cells enhances cutaneous wound healing. Immunology. 160:366–381. DOI:
10.1111/imm.13202. PMID:
32307696. PMCID:
PMC7370135.
70. Li Z, Lamb R, Coles MC, Bennett CL, Ambler CA. 2021; Inducible ablation of CD11c
+ cells to determine their role in skin wound repair. Immunology. 163:105–111. DOI:
10.1111/imm.13312. PMID:
33502012. PMCID:
PMC8044329.
71. Wasko R, Bridges K, Pannone R, et al. 2022; Langerhans cells are essential components of the angiogenic niche during murine skin repair. Dev Cell. 57:2699–2713.e5. DOI:
10.1016/j.devcel.2022.11.012. PMID:
36493773. PMCID:
PMC10848275.
72. Joshi N, Pohlmeier L, Ben-Yehuda Greenwald M, et al. 2020; Comprehensive characterization of myeloid cells during wound healing in healthy and healing-impaired diabetic mice. Eur J Immunol. 50:1335–1349. DOI:
10.1002/eji.201948438. PMID:
32306381. PMCID:
PMC7496577.
73. Stojadinovic O, Yin N, Lehmann J, Pastar I, Kirsner RS, Tomic-Canic M. 2013; Increased number of Langerhans cells in the epidermis of diabetic foot ulcers correlates with healing outcome. Immunol Res. 57:222–228. DOI:
10.1007/s12026-013-8474-z. PMID:
24277309. PMCID:
PMC4349345.
74. Komori HK, Witherden DA, Kelly R, et al. 2012; Cutting edge: dendritic epidermal γδ T cell ligands are rapidly and locally expressed by keratinocytes following cutaneous wounding. J Immunol. 188:2972–2976. DOI:
10.4049/jimmunol.1100887. PMID:
22393149. PMCID:
PMC3311739.
76. Witherden DA, Watanabe M, Garijo O, et al. 2012; The CD100 receptor interacts with its plexin B2 ligand to regulate epidermal γδ T cell function. Immunity. 37:314–325. DOI:
10.1016/j.immuni.2012.05.026. PMID:
22902232. PMCID:
PMC3430606.
77. Zhang C, Xiao C, Dang E, et al. 2018; CD100-plexin-B2 promotes the inflammation in psoriasis by activating NF-κB and the inflammasome in keratinocytes. J Invest Dermatol. 138:375–383. DOI:
10.1016/j.jid.2017.09.005. PMID:
28927892.
78. Wang F, Liu B, Yu Z, et al. 2018; Effects of CD100 promote wound healing in diabetic mice. J Mol Histol. 49:277–287. DOI:
10.1007/s10735-018-9767-2. PMID:
29637382.
79. Strid J, Sobolev O, Zafirova B, Polic B, Hayday A. 2011; The intraepithelial T cell response to NKG2D-ligands links lymphoid stress surveillance to atopy. Science. 334:1293–1297. DOI:
10.1126/science.1211250. PMID:
22144628. PMCID:
PMC3842529.
80. Dalessandri T, Crawford G, Hayes M, Castro Seoane R, Strid J. 2016; IL-13 from intraepithelial lymphocytes regulates tissue homeostasis and protects against carcinogenesis in the skin. Nat Commun. 7:12080. DOI:
10.1038/ncomms12080. PMID:
27357235. PMCID:
PMC4931319.
81. Ricardo-Gonzalez RR, Van Dyken SJ, Schneider C, et al. 2018; Tissue signals imprint ILC2 identity with anticipatory function. Nat Immunol. 19:1093–1099. DOI:
10.1038/s41590-018-0201-4. PMID:
30201992. PMCID:
PMC6202223.
82. Rak GD, Osborne LC, Siracusa MC, et al. 2016; IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing. J Invest Dermatol. 136:487–496. DOI:
10.1038/JID.2015.406. PMID:
26802241. PMCID:
PMC4731037.
83. Li Z, Hodgkinson T, Gothard EJ, et al. 2016; Epidermal Notch1 recruits RORγ(+) group 3 innate lymphoid cells to orchestrate normal skin repair. Nat Commun. 7:11394. DOI:
10.1038/ncomms11394. PMID:
27099134. PMCID:
PMC4844683.
86. Yoshida K, Kubo A, Fujita H, et al. 2014; Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J Allergy Clin Immunol. 134:856–864. DOI:
10.1016/j.jaci.2014.08.001. PMID:
25282566.
87. Leitch CS, Natafji E, Yu C, et al. 2016; Filaggrin-null mutations are associated with increased maturation markers on Langerhans cells. J Allergy Clin Immunol. 138:482–490.e7. DOI:
10.1016/j.jaci.2015.11.040. PMID:
26934939. PMCID:
PMC5422581.
88. Elentner A, Finke D, Schmuth M, et al. 2009; Langerhans cells are critical in the development of atopic dermatitis-like inflammation and symptoms in mice. J Cell Mol Med. 13:2658–2672. DOI:
10.1111/j.1582-4934.2009.00797.x. PMID:
19538461. PMCID:
PMC8183941.
89. Sulcova J, Maddaluno L, Meyer M, Werner S. 2015; Accumulation and activation of epidermal γδ T cells in a mouse model of chronic dermatitis is not required for the inflammatory phenotype. Eur J Immunol. 45:2517–2528. DOI:
10.1002/eji.201545675. PMID:
26081170.
91. Brunner PM, Emerson RO, Tipton C, et al. 2017; Nonlesional atopic dermatitis skin shares similar T-cell clones with lesional tissues. Allergy. 72:2017–2025. DOI:
10.1111/all.13223. PMID:
28599078.
92. Salimi M, Barlow JL, Saunders SP, et al. 2013; A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 210:2939–2950. DOI:
10.1084/jem.20130351. PMID:
24323357. PMCID:
PMC3865470.
93. Dainichi T, Kitoh A, Otsuka A, et al. 2018; The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol. 19:1286–1298. DOI:
10.1038/s41590-018-0256-2. PMID:
30446754.
94. Nakajima K, Kataoka S, Sato K, et al. 2019; Stat3 activation in epidermal keratinocytes induces Langerhans cell activation to form an essential circuit for psoriasis via IL-23 production. J Dermatol Sci. 93:82–91. DOI:
10.1016/j.jdermsci.2018.11.007. PMID:
30514663.
95. Yoshiki R, Kabashima K, Honda T, et al. 2014; IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing γδ T cells. J Invest Dermatol. 134:1912–1921. DOI:
10.1038/jid.2014.98. PMID:
24569709.
96. Eaton LH, Mellody KT, Pilkington SM, Dearman RJ, Kimber I, Griffiths CEM. 2018; Impaired Langerhans cell migration in psoriasis is due to an altered keratinocyte phenotype induced by interleukin-17. Br J Dermatol. 178:1364–1372. DOI:
10.1111/bjd.16172. PMID:
29194565.
97. Cumberbatch M, Singh M, Dearman RJ, Young HS, Kimber I, Griffiths CE. 2006; Impaired Langerhans cell migration in psoriasis. J Exp Med. 203:953–960. DOI:
10.1084/jem.20052367. PMID:
16567387. PMCID:
PMC2118293.
98. Yeh CY, Su SH, Tan YF, et al. 2023; PD-L1 enhanced by cis-urocanic acid on Langerhans cells inhibits Vγ4
+ γδT17 cells in imiquimod-induced skin inflammation. J Invest Dermatol. 143:1449–1460. DOI:
10.1016/j.jid.2023.02.018. PMID:
36868499.
99. Castillo-González R, Cibrian D, Sánchez-Madrid F. 2021; Dissecting the complexity of γδ T-cell subsets in skin homeostasis, inflammation, and malignancy. J Allergy Clin Immunol. 147:2030–2042. DOI:
10.1016/j.jaci.2020.11.023. PMID:
33259837.
100. Chen L, Shen Z. 2020; Tissue-resident memory T cells and their biological characteristics in the recurrence of inflammatory skin disorders. Cell Mol Immunol. 17:64–75. DOI:
10.1038/s41423-019-0291-4. PMID:
31595056. PMCID:
PMC6952397.
101. Cibrian D, Saiz ML, de la Fuente H, et al. 2016; CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nat Immunol. 17:985–996. Erratum in: Nat Immunol 2016;17:1235. DOI:
10.1038/ni.3504. PMID:
27376471. PMCID:
PMC5146640.
102. Teunissen MBM, Munneke JM, Bernink JH, et al. 2014; Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol. 134:2351–2360. DOI:
10.1038/jid.2014.146. PMID:
24658504.
103. Bernink JH, Ohne Y, Teunissen MBM, et al. 2019; c-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nat Immunol. 20:992–1003. Erratum in: Nat Immunol 2020;21:101. DOI:
10.1038/s41590-019-0554-3. PMID:
31723260.