Neurointervention.  2025 Mar;20(1):4-14. 10.5469/neuroint.2025.00052.

Application of Artificial Intelligence in Acute Ischemic Stroke: A Scoping Review

Affiliations
  • 1Department of Neurology, Yonsei University College of Medicine, Seoul, Korea

Abstract

Artificial intelligence (AI) is revolutionizing stroke care by enhancing diagnosis, treatment, and outcome prediction. This review examines 505 original studies on AI applications in ischemic stroke, categorized into outcome prediction, stroke risk prediction, diagnosis, etiology prediction, and complication and comorbidity prediction. Outcome prediction, the most explored category, includes studies predicting functional outcomes, mortality, and recurrence, often achieving high accuracy and outperforming traditional methods. Stroke risk prediction models effectively integrate clinical and imaging data, improving assessments of both first-time and recurrent stroke risks. Diagnostic tools, such as automated imaging analysis and lesion segmentation, streamline acute stroke workflows, while AI models for large vessel occlusion detection demonstrate clinical utility. Etiology prediction focuses on identifying causes such as atrial fibrillation or cancer-associated thrombi, using imaging and thrombus analysis. Complication and comorbidity prediction models address stroke-associated pneumonia and acute kidney injury, aiding in risk stratification and resource allocation. While significant advancements have been made, challenges such as limited validation, ethical considerations, and the need for better data collection persist. This review highlights the advancements in AI applications for addressing key challenges in stroke care, demonstrating its potential to enhance precision medicine and improve patient outcomes.

Keyword

Stroke; Artificial intelligence; Machine learning; Outcome assessment, health care; Diagnostic imaging; Risk assessment
Full Text Links
  • NI
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr