Korean J Orthod.  2025 Jan;55(1):37-47. 10.4041/kjod24.134.

Are different photogrammetry applications on smartphones sufficiently reliable?

Affiliations
  • 1Department of Orthodontics, Marmara University, Istanbul, Türkiye

Abstract


Objective
This study aimed to compare the accuracy of Qlone, Magiscan, and 3dMD with that of direct anthropometry (DA).
Methods
The study involved 41 patients. Sixteen facial landmarks, including six individual and five paired points, were marked on each participant’s face. Subsequently, 18 linear measurements were assessed using a 3dMD device (multicamera photogrammetry), Qlone, Magiscan smartphone applications (single-camera photogrammetry), and DA. The Qlone and Magiscan images were calibrated using a reference point 10 mm from the nasion during DA to ensure a 1:1 correspondence.
Results
Concerning the precision of the digital methods compared to DA, the mean intraclass correlation coefficient values of 3dMD, Qlone and Magiscan were 0.989, 0.980 and 0.982, respectively. Compared with DA, 3dMD achieved excellent trueness with the lowest average absolute differences in the measurements (highest value = 0.95 ± 0.62 mm). The highest values for Qlone and Magiscan were 1.51 ± 1.11 mm and 2.14 ± 1.69 mm, respectively. According to the number of parameters, the ranking of unreliable values (> 2 mm) was Magiscan (n = 46), Qlone (n = 35), and then, 3dMD (n = 4). Furthermore, reliability (less than 1 mm) was the highest for 3dMD (n = 517), followed by Magiscan (n = 457), and then, Qlone (n = 415).
Conclusions
The 3dMD achieved excellent trueness with the lowest average absolute differences in the measurements. Based on statistical analysis, the trueness values of Magiscan and Qlone were close to that of 3dMD. To apply these smartphone applications clinically, more studies are necessary.

Keyword

Photography; 3-dimensional diagnosis; 3D scanner; Soft tissue

Figure

  • Figure 1 The landmarks used in the present study. See Table 1 for definitions of each landmark or measurement.

  • Figure 2 A, 3dMD image. B, Magiscan image. C, Qlone image.

  • Figure 3 A 3D color map of the superimposed samples for a patient.

  • Figure 4 Reliability differences among 3dMD, Magiscan, and Qlone.


Reference

References

1. Nair AG, Santhanam A. 2016; Clinical photography for periorbital and facial aesthetic practice. J Cutan Aesthet Surg. 9:115–21. https://doi.org/10.4103/0974-2077.184047. DOI: 10.4103/0974-2077.184047. PMID: 27398013. PMCID: PMC4924408.
Article
2. Stebel A, Desmedt D, Bronkhorst E, Kuijpers MA, Fudalej PS. 2016; Rating nasolabial appearance on three-dimensional images in cleft lip and palate: a comparison with standard photographs. Eur J Orthod. 38:197–201. https://doi.org/10.1093/ejo/cjv024. DOI: 10.1093/ejo/cjv024. PMID: 25900054. PMCID: PMC4914758.
Article
3. Jyothikiran H, Shanthara JR, Subbiah P, Thomas M. 2014; Craniofacial imaging in orthodontics--past present and future. Int J Orthod Milwaukee. 25:21–6. https://pubmed.ncbi.nlm.nih.gov/24812737/.
4. Da Silveira AC, Daw JL Jr, Kusnoto B, Evans C, Cohen M. 2003; Craniofacial applications of three-dimensional laser surface scanning. J Craniofac Surg. 14:449–56. https://doi.org/10.1097/00001665-200307000-00009. DOI: 10.1097/00001665-200307000-00009. PMID: 12867855.
Article
5. Dindaroğlu F, Kutlu P, Duran GS, Görgülü S, Aslan E. 2016; Accuracy and reliability of 3D stereophotogrammetry: a comparison to direct anthropometry and 2D photogrammetry. Angle Orthod. 86:487–94. https://doi.org/10.2319/041415-244.1. DOI: 10.2319/041415-244.1. PMID: 26267357. PMCID: PMC8601748.
Article
6. Li Q, Bi M, Yang K, Liu W. 2021; The creation of a virtual dental patient with dynamic occlusion and its application in esthetic dentistry. J Prosthet Dent. 126:14–8. https://doi.org/10.1016/j.prosdent.2020.08.026. DOI: 10.1016/j.prosdent.2020.08.026. PMID: 33323177.
Article
7. Erten O, Yılmaz BN. 2018; Three-dimensional imaging in orthodontics. Turk J Orthod. 31:86–94. https://doi.org/10.5152/TurkJOrthod.2018.17041. DOI: 10.5152/TurkJOrthod.2018.17041. PMID: 30206567. PMCID: PMC6124883. PMID: 5e3ae386d4b44a85bff883acd7aa254c.
Article
8. Mannsbach M. 1922; Die stereophotogrammetrie als hilfsmittel in der orthodontie. Dtsch Zahnärzt Orthop. 14:105. https://scholar.google.co.kr/scholar?hl=ko&as_sdt=0%2C5&q=%22Die+stereophotogrammetrie+als+hilfsmittel+in+der+orthodontie%22&btnG=.
9. Magnani M, Douglass M. López Varela SL, editor. 2019. Photogrammetry and stereophotogrammetry. The encyclopedia of archaeological sciences. Wiley Blackwell;Chichester: p. 1–4. https://doi.org/10.1002/9781119188230.saseas0451. DOI: 10.1002/9781119188230.saseas0451.
10. Piedra-Cascón W, Meyer MJ, Methani MM, Revilla-León M. 2020; Accuracy (trueness and precision) of a dual-structured light facial scanner and interexaminer reliability. J Prosthet Dent. 124:567–74. https://doi.org/10.1016/j.prosdent.2019.10.010. DOI: 10.1016/j.prosdent.2019.10.010. PMID: 31918895.
Article
11. Yüksel Coşkun E, Esenlik E. 2020; A prospective study comparing adolescent and post-adolescent periods regarding effects of activator appliance in patients with class II mandibular retrognathia by using 3dMDface analysis and cephalometry. Med Sci Monit. 26:e921401. https://doi.org/10.12659/msm.921401. DOI: 10.12659/MSM.921401. PMID: 32588836. PMCID: PMC7337095.
Article
12. White JD, Ortega-Castrillon A, Virgo C, Indencleef K, Hoskens H, Shriver MD, et al. 2020; Sources of variation in the 3dMDface and Vectra H1 3D facial imaging systems. Sci Rep. 10:4443. https://doi.org/10.1038/s41598-020-61333-3. DOI: 10.1038/s41598-020-61333-3. PMID: 32157192. PMCID: PMC7064576.
Article
13. Zhao YJ, Xiong YX, Wang Y. 2017; Three-dimensional accuracy of facial scan for facial deformities in clinics: a new evaluation method for facial scanner accuracy. PLoS One. 12:e0169402. https://doi.org/10.1371/journal.pone.0169402. DOI: 10.1371/journal.pone.0169402. PMID: 28056044. PMCID: PMC5215889. PMID: 947bc6032a3f4116b2f9172494d8647b.
Article
14. Aynechi N, Larson BE, Leon-Salazar V, Beiraghi S. 2011; Accuracy and precision of a 3D anthropometric facial analysis with and without landmark labeling before image acquisition. Angle Orthod. 81:245–52. https://doi.org/10.2319/041810-210.1. DOI: 10.2319/041810-210.1. PMID: 21208076. PMCID: PMC8925260.
Article
15. Fan W, Guo Y, Hou X, Liu J, Li S, Ju S, et al. 2022; Validation of the portable next-generation VECTRA H2 3D imaging system for periocular anthropometry. Front Med (Lausanne). 9:833487. https://doi.org/10.3389/fmed.2022.833487. DOI: 10.3389/fmed.2022.833487. PMID: 35360740. PMCID: PMC8962622. PMID: 33c6eee451f3402db550602d07d12038.
Article
16. Loy RCH, Liew MKM, Yong CW, Wong RCW. 2023; Validation of low-cost mobile phone applications and comparison with professional imaging systems for three-dimensional facial imaging: a pilot study. J Dent. 137:104676. https://doi.org/10.1016/j.jdent.2023.104676. DOI: 10.1016/j.jdent.2023.104676. PMID: 37633483.
Article
17. Liu J, Zhang C, Cai R, Yao Y, Zhao Z, Liao W. 2021; Accuracy of 3-dimensional stereophotogrammetry: comparison of the 3dMD and Bellus3D facial scanning systems with one another and with direct anthropometry. Am J Orthod Dentofacial Orthop. 160:862–71. https://doi.org/10.1016/j.ajodo.2021.04.020. DOI: 10.1016/j.ajodo.2021.04.020. PMID: 34814981.
Article
18. Van Lint L, Christiaens L, Stroo V, Bila M, Willaert R, Sun Y, et al. 2023; Accuracy comparison of 3D face scans obtained by portable stereophotogrammetry and smartphone applications. J Med Biol Eng. 43:550–60. https://doi.org/10.1007/s40846-023-00817-9. DOI: 10.1007/s40846-023-00817-9.
Article
19. Harrap R, Daniel S. 2009. Mobile lidar mapping: building the next generation of outdoor environment models for AR [Internet]. Orlando, FL;IEEE International Symposium on Mixed and Augmented Reality ISMAR: Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7406fce8f7fc17a083eb533aafae2b91055d3961. cited 2009 Oct 19.
20. Akan B, Akan E, Şahan AO, Kalak M. 2021; Evaluation of 3D face-scan images obtained by stereophotogrammetry and smartphone camera. Int Orthod. 19:669–78. https://doi.org/10.1016/j.ortho.2021.08.007. DOI: 10.1016/j.ortho.2021.08.007. PMID: 34544662.
Article
21. Deutsch CK, Shell AR, Francis RW, Bird BD. Preedy VR, editor. 2012. The farkas system of craniofacial anthropometry: methodology and normative databases. Handbook of anthropometry: physical measures of human form in health and disease. Springer New York;New York: p. 561–73. https://doi.org/10.1007/978-1-4419-1788-1_29. DOI: 10.1007/978-1-4419-1788-1_29.
22. Aldridge K, Boyadjiev SA, Capone GT, DeLeon VB, Richtsmeier JT. 2005; Precision and error of three-dimensional phenotypic measures acquired from 3dMD photogrammetric images. Am J Med Genet A. 138a:247–53. https://doi.org/10.1002/ajmg.a.30959. DOI: 10.1002/ajmg.a.30959. PMID: 16158436. PMCID: PMC4443686.
Article
23. Weinberg SM, Naidoo S, Govier DP, Martin RA, Kane AA, Marazita ML. 2006; Anthropometric precision and accuracy of digital three-dimensional photogrammetry: comparing the Genex and 3dMD imaging systems with one another and with direct anthropometry. J Craniofac Surg. 17:477–83. https://doi.org/10.1097/00001665-200605000-00015. DOI: 10.1097/00001665-200605000-00015. PMID: 16770184.
Article
24. Staller S, Anigbo J, Stewart K, Dutra V, Turkkahraman H. 2022; Precision and accuracy assessment of single and multicamera three-dimensional photogrammetry compared with direct anthropometry. Angle Orthod. 92:635–41. https://doi.org/10.2319/101321-770.1. DOI: 10.2319/101321-770.1. PMID: 35622942. PMCID: PMC9374348.
Article
25. Pellitteri F, Brucculeri L, Spedicato GA, Siciliani G, Lombardo L. 2021; Comparison of the accuracy of digital face scans obtained by two different scanners. Angle Orthod. 91:641–9. https://doi.org/10.2319/092720-823.1. DOI: 10.2319/092720-823.1. PMID: 33826690. PMCID: PMC8376172.
Article
26. Masoud MI, Bansal N, Castillo JC, Manosudprasit A, Allareddy V, Haghi A, et al. 2017; 3D dentofacial photogrammetry reference values: a novel approach to orthodontic diagnosis. Eur J Orthod. 39:215–25. https://doi.org/10.1093/ejo/cjw055. DOI: 10.1093/ejo/cjw055. PMID: 28339510.
Article
27. Hong C, Choi K, Kachroo Y, Kwon T, Nguyen A, McComb R, et al. 2017; Evaluation of the 3dMDface system as a tool for soft tissue analysis. Orthod Craniofac Res. 20 Suppl 1:119–24. https://doi.org/10.1111/ocr.12178. DOI: 10.1111/ocr.12178. PMID: 28643910. PMCID: PMC6005204.
Article
28. Raffone C, Gianfreda F, Bollero P, Pompeo MG, Miele G, Canullo L. 2022; Chairside virtual patient protocol. Part 1: free vs guided face scan protocol. J Dent. 116:103881. https://doi.org/10.1016/j.jdent.2021.103881. DOI: 10.1016/j.jdent.2021.103881. PMID: 34762986.
Article
29. Aung SC, Ngim RC, Lee ST. 1995; Evaluation of the laser scanner as a surface measuring tool and its accuracy compared with direct facial anthropometric measurements. Br J Plast Surg. 48:551–8. https://doi.org/10.1016/0007-1226(95)90043-8. DOI: 10.1016/0007-1226(95)90043-8. PMID: 8548155.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr