Korean J Orthod.  2025 Jan;55(1):15-25. 10.4041/kjod24.073.

Scanning electron microscopy analysis of metallic and aesthetic bracket meshes before and after debonding

Affiliations
  • 1Institute of Dental Research, Department of Integral Dental Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
  • 2Department of Natural and Exact Sciences, CUValles, University of Guadalajara, Ameca, Mexico
  • 3Laboratory of Dental Materials and Biomaterials, Meritorious Autonomous University of Puebla, Puebla, Mexico
  • 4Laboratory of Public Health Research, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
  • 5Materials Research Institute, National Autonomous University of Mexico, Mexico City, Mexico

Abstract


Objective
To study the influence of bracket base meshes on shear bond strength and observe them using a scanning electron microscopy (SEM) before and after debonding.
Methods
Ninety brackets were divided into nine groups of 10 samples each: G1-Alexander, G2-Mini Sprint® Brackets, G3-In-Ovation R CCO,  G4-Gemini SL Self-Ligating Bracket, G5-Classic mini 2G Stylus® , G6-Gemini Metal Brackets, G7-ClarityTM Advanced, G8-Crystall-Ize® , and G9-Ceramic Series Flexx 2G® . Groups G1 to G6 and G7 to G9 consisted of metallic and aesthetic brackets, respectively. Initial photographs of all brackets were taken through SEM at 25X magnification. The brackets were then bonded to premolars using TransbondTM XT, and a shear bond strength test was conducted after 24 hours using an Instron machine at 1 mm/min. After debonding, the bracket meshes were observed using SEM.
Results
Before bonding, 72.22% of brackets didn’t present mesh defects, while 27.77% did. SEM analysis revealed that G4 and G5 presented defects in 100%, G7 in 40%, and G8 in 10%. The average shear bond strength of 9.67 ± 2.84 MPa and 11.21 ± 4.99 MPa were obtained for both metallic and aesthetic brackets, respectively. A Pairwise–Wilcoxon test with Benjamini–Hochberg correction was conducted to determine specific statistical differences between the groups, revealing significant differences based on bracket type and shear bond strength (P < 0.009).
Conclusions
This study suggested that the shape of bracket meshes influenced shear bond strength.

Keyword

Bracket; Adhesive; Shear bond strength; Scanning electron microscopy

Figure

  • Figure 1 Mesh images of the different metallic brackets. G1, Alexander; G2, Mini Sprint® Brackets; G3, In-Ovation R CCO; G4, Gemini SL Self-Ligating Brackets; G5, Classic mini 2G Stylus®; and G6, Gemini Metal Brackets. In G4A, a magnification of G4 at 90×, it is observed that a greater detail of the failure in the union of its rods is in the center of the bracket. In G5A, a magnification of G5 at 100×, the failure in the union of the rods can be seen.

  • Figure 2 Mesh images of the different aesthetic brackets. In G7, ClarityTM Advanced, it is possible to see a defect, where G7A, at a higher magnification of 80×, shows it; meanwhile, in G7B, at 160×, the size of the aggregate can be seen. In G8, Crystall-Ize®, it is observed that the aggregates are not homogeneous, and G8A at 160× shows them in detail. Finally, in G9, Ceramic Series Flexx 2G®, the mesh without defects can be observed.

  • Figure 3 Adhesive remnant index by bracket group.

  • Figure 4 Percentage of bracket meshes with or absence of tooth enamel, namely percentage of teeth with or absence of enamel loss, respectively.

  • Figure 5 Mesh images at 25× and 30× of metallic brackets after debonding. G1, Alexander; G2, Mini Sprint® Brackets; G3, In-Ovation R CCO; G4, Gemini SL Self-Ligating Brackets; G5, Classic mini 2G Stylus® and G6, Gemini Metal Brackets. In G3A, a higher magnification (250×) of figure G3 is marked with a circle highlighting a fragment of tooth enamel (enamel loss), where the presence of enamel prisms is visible. In image G5A, a 250× magnification of figure G5 shows the failure in the union of the rods.

  • Figure 6 Mesh images at 25× of aesthetic brackets. G7, ClarityTM Advanced; G8, Crystall-Ize®; and G9, Ceramic Series Flexx 2G®. G7 shows the bracket mesh with the absence of tooth enamel. G8 and G9 show a tooth enamel fragment marked in a yellow circle, and then in G8A and G9A, which are magnifications of G8 and G9 at 250×, the presence of tooth enamel prisms can be observed.


Reference

References

1. Molina F, Freitas KMS, Binz Ordóñez MCR, Cruz EF, Henriques RP, Aguirre Balseca GM. 2019; Comparison of shear bond strength of MIM technology brackets with conventional and rail-shaped mesh bases: an in vitro study. Open Dent J. 13:255–60. https://doi.org/10.2174/1874210601913010255. DOI: 10.2174/1874210601913010255.
Article
2. Sharma-Sayal SK, Rossouw PE, Kulkarni GV, Titley KC. 2003; The influence of orthodontic bracket base design on shear bond strength. Am J Orthod Dentofacial Orthop. 124:74–82. https://doi.org/10.1016/s0889-5406(03)00311-1. DOI: 10.1016/S0889-5406(03)00311-1. PMID: 12867901.
Article
3. Ahangar Atashi MH, Sadr Haghighi AH, Nastarin P, Ahangar Atashi S. 2018; Variations in enamel damage after debonding of two different bracket base designs: an in vitro study. J Dent Res Dent Clin Dent Prospects. 12:56–62. https://doi.org/10.15171/joddd.2018.009. DOI: 10.15171/joddd.2018.009. PMID: 29732022. PMCID: PMC5928475. PMID: c32b1c84c5c347648403da275f32179b.
Article
4. Radhakrishnan PD, Sapna Varma NK, Ajith VV. 2017; Assessment of bracket surface morphology and dimensional change. Contemp Clin Dent. 8:71–80. https://doi.org/10.4103/0976-237x.205045. DOI: 10.4103/0976-237X.205045. PMID: 28566855. PMCID: PMC5426171. PMID: 07f0359b23e74d97b0c64ef6aff20b30.
Article
5. Bishara SE, Soliman MM, Oonsombat C, Laffoon JF, Ajlouni R. 2004; The effect of variation in mesh-base design on the shear bond strength of orthodontic brackets. Angle Orthod. 74:400–4. https://pubmed.ncbi.nlm.nih.gov/15264654/.
6. Kang DY, Choi SH, Cha JY, Hwang CJ. 2013; Quantitative analysis of mechanically retentive ceramic bracket base surfaces with a three-dimensional imaging system. Angle Orthod. 83:705–11. https://doi.org/10.2319/100412-782.1. DOI: 10.2319/100412-782.1. PMID: 23270384. PMCID: PMC8754031.
Article
7. Knox J, Kralj B, Hubsch P, Middleton J, Jones ML. 2001; An evaluation of the quality of orthodontic attachment offered by single- and double-mesh bracket bases using the finite element method of stress analysis. Angle Orthod. 71:149–55. https://pubmed.ncbi.nlm.nih.gov/11302592/.
8. Maijer R, Smith DC. 1981; Variables influencing the bond strength of metal orthodontic bracket bases. Am J Orthod. 79:20–34. https://doi.org/10.1016/0002-9416(81)90098-1. DOI: 10.1016/0002-9416(81)90098-1. PMID: 6450539.
Article
9. Chen HY, Su MZ, Chang HF, Chen YJ, Lan WH, Lin CP. 2007; Effects of different debonding techniques on the debonding forces and failure modes of ceramic brackets in simulated clinical set-ups. Am J Orthod Dentofacial Orthop. 132:680–6. https://doi.org/10.1016/j.ajodo.2006.01.035. DOI: 10.1016/j.ajodo.2006.01.035. PMID: 18005844.
Article
10. da Rocha JM, Gravina MA, da Silva Campos MJ, Quintão CC, Elias CN, Vitral RW. 2014; Shear bond resistance and enamel surface comparison after the bonding and debonding of ceramic and metallic brackets. Dental Press J Orthod. 19:77–85. https://doi.org/10.1590/2176-9451.19.1.077-085.oar. DOI: 10.1590/2176-9451.19.1.077-085.oar. PMID: 24713563. PMCID: PMC4299420. PMID: d8f7b4da7fb04272a6d27e00a37f9efd.
Article
11. Holberg C, Winterhalder P, Holberg N, Wichelhaus A, Rudzki-Janson I. 2014; Orthodontic bracket debonding: risk of enamel fracture. Clin Oral Investig. 18:327–34. https://doi.org/10.1007/s00784-013-0969-4. DOI: 10.1007/s00784-013-0969-4. PMID: 23504206.
Article
12. Delavarian M, Rahimi F, Mohammadi R, Imani MM. 2019; Shear bond strength of ceramic and metal brackets bonded to enamel using color-change adhesive. Dent Res J (Isfahan). 16:233–8. https://pubmed.ncbi.nlm.nih.gov/31303877/. DOI: 10.4103/1735-3327.261128. PMID: 31303877. PMCID: PMC6596176. PMID: 03d12fa1567e43eb9c797c13df2e6c0c.
Article
13. Alavi S, Ehteshami A. 2019; Comparison of shear bond strength and enamel surface changing between the two-step etching and primer and self-etch primer methods in rebonding of orthodontic brackets: an in vitro study. Dent Res J (Isfahan). 16:239–44. https://pubmed.ncbi.nlm.nih.gov/31303878/. DOI: 10.4103/1735-3327.261138. PMID: 31303878. PMCID: PMC6596179. PMID: 34b48f84be174357ab78e18c1f9cd677.
Article
14. Dorminey JC, Dunn WJ, Taloumis LJ. 2003; Shear bond strength of orthodontic brackets bonded with a modified 1-step etchant-and-primer technique. Am J Orthod Dentofacial Orthop. 124:410–3. https://doi.org/10.1016/s0889-5406(03)00404-9. DOI: 10.1016/S0889-5406(03)00404-9. PMID: 14560271.
Article
15. Keizer S, ten Cate JM, Arends J. 1976; Direct bonding of orthodontic brackets. Am J Orthod. 69:318–27. https://doi.org/10.1016/0002-9416(76)90079-8. DOI: 10.1016/0002-9416(76)90079-8. PMID: 766645.
Article
16. Bishara SE, VonWald L, Laffoon JF, Warren JJ. 2001; Effect of a self-etch primer/adhesive on the shear bond strength of orthodontic brackets. Am J Orthod Dentofacial Orthop. 119:621–4. https://doi.org/10.1067/mod.2001.113269. DOI: 10.1067/mod.2001.113269. PMID: 11395706.
Article
17. Devatha AB, Lakshmi MN, Kumar NB, Erukala S, Valluri R, Ealla KKR. 2019; A comparative study of shear bond strength of direct bonding system with and without a liquid primer: an in vitro study. J Pharm Bioallied Sci. 11(Suppl 3):S515–22. https://doi.org/10.4103/jpbs.JPBS_259_18. DOI: 10.4103/jpbs.JPBS_259_18. PMID: 31920268. PMCID: PMC6896579. PMID: 6874632fd2144b26b2dcc439810469f4.
Article
18. Pouyanfar H, Tabaii ES, Bakhtiari M, Falah-Kooshki S, Teimourian H, Imani MM. 2019; Shear bond strength of metal brackets to zirconia following different surface treatments using a universal adhesive. J Clin Diagn Res. 13:ZC20–3. https://doi.org/10.7860/jcdr/2019/40352.13087. DOI: 10.7860/JCDR/2019/40352.13087. PMID: cb8181029bf94e1b905ae888476d75f3.
Article
19. Shaik JA, Reddy RK, Bhagyalakshmi K, Shah MJ, Madhavi O, Ramesh SV. 2018; In vitro evaluation of shear bond strength of orthodontic brackets bonded with different adhesives. Contemp Clin Dent. 9:289–92. https://doi.org/10.4103/ccd.ccd_15_18. DOI: 10.4103/ccd.ccd_15_18. PMID: 29875575. PMCID: PMC5968697. PMID: 981bfcae598a4eb095b4f08a3c862364.
Article
20. Ansari MY, Agarwal DK, Gupta A, Bhattacharya P, Ansar J, Bhandari R. 2016; Shear bond strength of ceramic brackets with different base designs: comparative in-vitro study. J Clin Diagn Res. 10:ZC64–8. https://doi.org/10.7860/jcdr/2016/20624.8910. DOI: 10.7860/JCDR/2016/20624.8910. PMID: 28050507. PMCID: PMC5198460. PMID: 738fac161b774e91a06c91c442f112be.
Article
21. Mitwally RA, Bakhsh ZT, Feteih RM, Bakry AS, Abbassy MA. 2019; Orthodontic bracket bonding using self-adhesive cement to facilitate bracket debonding. J Adhes Dent. 21:551–6. https://doi.org/10.3290/j.jad.a43652.
Article
22. Hofmann E, Elsner L, Hirschfelder U, Ebert T, Hanke S. 2017; Effects of enamel sealing on shear bond strength and the adhesive remnant index: study of three fluoride-releasing adhesives in combination with metal and ceramic brackets. J Orofac Orthop. 78:1–10. https://doi.org/10.1007/s00056-016-0065-x. DOI: 10.1007/s00056-016-0065-x. PMID: 27896419.
Article
23. Mahmoud E, Pacurar M, Bechir ES, Maris M, Olteanu C, Dascalu IT, et al. 2017; Comparison of shear bond strength and adhesive remnant index of brackets bonded with two types of orthodontic adhesives. Mater Plast. 54:141–4. https://doi.org/10.37358/MP.17.1.4805. DOI: 10.37358/MP.17.1.4805.
Article
24. International Organization for Standardization. 2003. International Organization for Standardization (ISO) with Technical Specification (ISO/TS) 11405. ISO;Geneva: Report No.: ISO/TS 11405:2003. https://www.iso.org/standard/31486.html. DOI: 10.1093/law:epil/9780199231690/e1887.
25. Artun J, Bergland S. 1984; Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am J Orthod. 85:333–40. https://doi.org/10.1016/0002-9416(84)90190-8. DOI: 10.1016/0002-9416(84)90190-8. PMID: 6231863.
Article
26. Alencar EQ, Nobrega ML, Dametto FR, Santos PB, Pinheiro FH. 2016; Comparison of two methods of visual magnification for removal of adhesive flash during bracket placement using two types of orthodontic bonding agents. Dental Press J Orthod. 21:43–50. https://doi.org/10.1590/2177-6709.21.6.043-050.oar. DOI: 10.1590/2177-6709.21.6.043-050.oar. PMID: 28125139. PMCID: PMC5278932.
Article
27. Hellak A, Rusdea P, Schauseil M, Stein S, Korbmacher-Steiner HM. 2016; Enamel shear bond strength of two orthodontic self-etching bonding systems compared to TransbondTM XT. J Orofac Orthop. 77:391–9. https://doi.org/10.1007/s00056-016-0046-0. DOI: 10.1007/s00056-016-0046-0. PMID: 27582286.
Article
28. Zanarini M, Gracco A, Lattuca M, Marchionni S, Gatto MR, Bonetti GA. 2013; Bracket base remnants after orthodontic debonding. Angle Orthod. 83:885–91. https://doi.org/10.2319/121112-930.1. DOI: 10.2319/121112-930.1. PMID: 23530544. PMCID: PMC8744527.
Article
29. Ferreira EF, Vilani GNL, Jansen WC, Brito HHA, Neto Ferreira RA, Manzi FR, et al. 2016; Enamel loss and superficial aspect during bonding and debonding of metallic brackets. Biosci J. 32:550–9. https://doi.org/10.14393/BJ-v32n2a2016-30162. DOI: 10.14393/BJ-v32n2a2016-30162. PMID: 414252eb4e1e4b23b03ed89299bd4429.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr