2. Timpel P, Oswald S, Schwarz PE, Harst L. Mapping the evidence on the effectiveness of telemedicine interventions in diabetes, dyslipidemia, and hypertension: an umbrella review of systematic reviews and meta-analyses. J Med Internet Res. 2020; 22(3):e16791.
https://doi.org/10.2196/16791.
Article
3. Seixas AA, Olaye IM, Wall SP, Dunn P. Optimizing Healthcare through digital health and wellness solutions to meet the needs of patients with chronic disease during the COVID-19 era. Front Public Health. 2021; 9:667654.
https://doi.org/10.3389/fpubh.2021.667654.
Article
4. Taylor ML, Thomas EE, Vitangcol K, Marx W, Campbell KL, Caffery LJ, et al. Digital health experiences reported in chronic disease management: an umbrella review of qualitative studies. J Telemed Telecare. 2022; 28(10):705–17.
https://doi.org/10.1177/1357633X221119620.
Article
5. Whitman A, De Lew N, Chappel A, Aysola V, Zuckerman R, Sommers BD. Addressing social determinants of health: examples of successful evidence-based strategies and current federal efforts [Internet]. Washington (DC): Assistant Secretary for Planning and Evaluation;2022. [cited at 2025 Jan 5]. Available from:
https://aspe.hhs.gov/reports/sdoh-evidence-review.
7. Koehler F, Koehler K, Deckwart O, Prescher S, Wegscheider K, Winkler S, et al. Telemedical Interventional Management in Heart Failure II (TIM-HF2), a randomised, controlled trial investigating the impact of telemedicine on unplanned cardiovascular hospitalisations and mortality in heart failure patients: study design and description of the intervention. Eur J Heart Fail. 2018; 20(10):1485–93.
https://doi.org/10.1002/ejhf.1300.
Article
8. Koehler F, Koehler K, Prescher S, Kirwan BA, Wegscheider K, Vettorazzi E, et al. Mortality and morbidity 1 year after stopping a remote patient management intervention: extended follow-up results from the telemedical interventional management in patients with heart failure II (TIM-HF2) randomised trial. Lancet Digit Health. 2020; 2(1):e16–e24.
https://doi.org/10.1016/S2589-7500(19)30195-5.
Article
12. DeMartino JK, Wang R, Chen CY, Ahmad N, Bookhart B, Mascola L. Global implications for COVID-19 vaccine series completion: insights from real-world data from the United States. Vaccines (Basel). 2022; 10(9):1561.
https://doi.org/10.3390/vaccines10091561.
Article
13. Zhou FL, Yeaw J, Karkare SU, DeKoven M, Berhanu P, Reid T. Impact of a structured patient support program on adherence and persistence in basal insulin therapy for type 2 diabetes. BMJ Open Diabetes Res Care. 2018; 6(1):e000593.
https://doi.org/10.1136/bmjdrc-2018-000593.
Article
15. Obradovic M, Lal A, Liedgens H. Validity and responsiveness of EuroQol-5 dimension (EQ-5D) versus Short Form-6 dimension (SF-6D) questionnaire in chronic pain. Health Qual Life Outcomes. 2013; 11:110.
https://doi.org/10.1186/1477-7525-11-110.
Article
16. Tromp J, Tay WT, Ouwerkerk W, Teng TK, Yap J, MacDonald MR, et al. Multimorbidity in patients with heart failure from 11 Asian regions: a prospective cohort study using the ASIAN-HF registry. PLoS Med. 2018; 15(3):e1002541.
https://doi.org/10.1371/journal.pmed.1002541.
Article
17. Horiuchi Y, Tanimoto S, Latif AH, Urayama KY, Aoki J, Yahagi K, et al. Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables. Int J Cardiol. 2018; 262:57–63.
https://doi.org/10.1016/j.ijcard.2018.03.098.
Article
18. Smeets M, Henrard S, Aertgeerts B, Cools F, Janssens S, Vaes B. Methods to identify heart failure patients in general practice and their impact on patient characteristics: a systematic review. Int J Cardiol. 2018; 257:199–206.
https://doi.org/10.1016/j.ijcard.2017.06.108.
Article
19. Urbich M, Globe G, Pantiri K, Heisen M, Bennison C, Wirtz HS, et al. A systematic review of medical costs associated with heart failure in the USA (2014–2020). Pharmacoeconomics. 2020; 38(11):1219–36.
https://doi.org/10.1007/s40273-020-00952-0.
Article
22. van Deursen VM, Urso R, Laroche C, Damman K, Dahlstrom U, Tavazzi L, et al. Co-morbidities in patients with heart failure: an analysis of the European Heart Failure Pilot Survey. Eur J Heart Fail. 2014; 16(1):103–11.
https://doi.org/10.1002/ejhf.30.
Article
25. Givertz MM, Yang M, Hess GP, Zhao B, Rai A, Butler J. Resource utilization and costs among patients with heart failure with reduced ejection fraction following a worsening heart failure event. ESC Heart Fail. 2021; 8(3):1915–23.
https://doi.org/10.1002/ehf2.13155.
Article
27. Nicholson G, Gandra SR, Halbert RJ, Richhariya A, Nordyke RJ. Patient-level costs of major cardiovascular conditions: a review of the international literature. Clinicoecon Outcomes Res. 2016; 8:495–506.
https://doi.org/10.2147/CEOR.S89331.
Article
28. Ahmad T, Lund LH, Rao P, Ghosh R, Warier P, Vaccaro B, et al. Machine Learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J Am Heart Assoc. 2018; 7(8):e008081.
https://doi.org/10.1161/JAHA.117.008081.
Article
30. Tsoi KK, Chan NB, Yiu KK, Poon SK, Lin B, Ho K. Machine learning clustering for blood pressure variability applied to systolic blood pressure intervention trial (SPRINT) and the Hong Kong community cohort. Hypertension. 2020; 76(2):569–76. Data clustering: 50 years beyond K-means.
https://doi.org/10.1161/HYPERTENSIONAHA.119.14213.
Article