1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021; 398(10304):957–80.
https://doi.org/10.1016/S0140-6736(21)01330-1.
5. Martinez-Rios E, Montesinos L, Alfaro-Ponce M, Pecchia L. A review of machine learning in hypertension detection and blood pressure estimation based on clinical and physiological data. Biomed Signal Process Control. 2021; 68:102813.
https://doi.org/10.1016/j.bspc.2021.102813.
Article
6. Alzubi R, Ramzan N, Alzoubi H, Katsigiannis S. SNPs-based hypertension disease detection via machine learning techniques. In : Proceedings of 2018, 24th International Conference on Automation and Computing (ICAC); 2018 Sep 6–8; Newcastle Upon Tyne, UK. p. 1–6.
https://doi.org/10.23919/IConAC.2018.8748972.
Article
7. Antony Raj CB, Nagarajan H, Aslam MH, Panchalingam S. SNP identification and discovery. Gupta MK, Behera L, editors. Bioinformatics in rice research: theories and techniques. Singapore: Springer;2021. p. 361–86.
https://doi.org/10.1007/978-981-16-3993-7_17.
Article
9. Park HW, Li D, Piao Y, Ryu KH. A hybrid feature selection method to classification and its application in hypertension diagnosis. Bursa M, Holzinger A, Renda M, Khuri S, editors. Information technology in bio-and medical informatics. Cham, Switzerland: Springer International Publishing;2017. p. 11–9.
https://doi.org/10.1007/978-3-319-64265-9_2.
Article
13. Beck DB, Petracovici A, He C, Moore HW, Louie RJ, Ansar M, et al. Delineation of a human Mendelian disorder of the DNA demethylation machinery: TET3 deficiency. Am J Hum Genet. 2020; 106(2):234–45.
https://doi.org/10.1016/j.ajhg.2019.12.007.
Article
17. Li C, Sun D, Liu J, Li M, Zhang B, Liu Y, et al. A prediction model of essential hypertension based on genetic and environmental risk factors in Northern Han Chinese. Int J Med Sci. 2019; 16(6):793–9.
https://doi.org/10.7150/ijms.33967.
Article
18. Lim NK, Lee JY, Lee JY, Park HY, Cho MC. The role of genetic risk score in predicting the risk of hypertension in the Korean population: Korean genome and epidemiology study. PLoS One. 2015; 10(6):e0131603.
https://doi.org/10.1371/journal.pone.0131603.
Article
20. Kumar M, Rath NK, Swain A, Rath SK. “Feature Selection and Classification of Microarray Data using MapReduce based ANOVA and K-Nearest Neighbor,”. Procedia Computer Science. 54:301–310. Jan. 2015; DOI:
10.1016/j.procs.2015.06.035.
Article
21. Cai L, Lv S, Shi K. “Application of an Improved CHI Feature Selection Algorithm,”. Discrete Dynamics in Nature and Society. 2021(1):9963382. 2021; DOI:
10.1155/2021/9963382.
Article
23. Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge (MA): MIT Press;1992.
24. Mandal M, Singh PK, Ijaz MF, Shafi J, Sarkar R. A Tristage wrapper-filter feature selection framework for disease classification. Sensors (Basel). 2021; 21(16):5571.
https://doi.org/10.3390/s21165571.
Article
25. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In : Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Aug 13–17; San Francisco, CA, USA. p. 785–94.
https://doi.org/10.1145/2939672.2939785.
Article