Blood Res.  2024;59:43. 10.1007/s44313-024-00051-5.

Bone marrow mesenchymal stem cell exosomes suppress JAK/STAT signaling pathway in acute myeloid leukemia in vitro

Affiliations
  • 1Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • 2Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
  • 3Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Introduction
Despite advances in the treatment of acute myeloid leukemia (AML), refractory forms of this malignancy and relapse remain common. Therefore, development of novel, synergistic targeted therapies are needed urgently. Recently, mesenchymal stem cells (MSCs) have been shown to be effective in treating various diseases, with most of their therapeutic outcomes attributed to their exosomes. In the current study, we investigated the effects of bone marrow mesenchymal stem cell (BM-MSC) exosomes on the expression of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling genes involved in AML pathogenesis. Material and Methods Exosomes were isolated from BM-MSCs and confirmed using transmission electron microscopy, dynamic light scattering, and flow cytometry. Subsequently, the exosome concentration was estimated using the bicinchoninic acid assay, and HL-60 cells were cocultured with 100 µg/mL of BM-MSC exosomes. Finally, the JAK2, STAT3, and STAT5 expression levels were analyzed using qRT-PCR.
Results
The exosome characterization results confirmed that most isolated nanoparticles exhibited a round morphology, expressed CD9, CD63, and CD81, which are specific protein markers for exosome identification, and ranged between 80 and 100 nm in diameter. Furthermore, qRT-PCR analysis revealed a significant downregulation of JAK2, STAT3, and STAT5 in HL-60 cells treated with 100 μg/mL of BM-MSC exosomes.
Conclusion
Since JAK/STAT signaling contributes to AML survival, our findings suggest that the downregulation of JAK/STAT genes by BM-MSC exosomes in leukemic cells may aid in designing a potent therapeutic strategy for AML treatment.

Keyword

Bone marrow mesenchymal stem cell; Exosome; Acute myeloid leukemia; JAK2; STAT3; STAT5

Figure

  • Fig. 1 The identification and confirmation of BM-MSCs. A In passage 2, BM-MSCs demonstrated fibroblast-like morphology under an inverted microscope. B The flow cytometry was used to check the immune phenotype of BM-MSCs. BM-MSCs lacked CD45, CD34, and CD14, but expressed CD105, CD90, and CD73

  • Fig. 2 The identification and confirmation of BM-MSC exosomes. A The size of the isolated exosomes was determined using the DLS technique. The exosome sizes varied from 80–100 nm. B Morphology of isolated exosomes under TEM. The BM-MSC exosomes demonstrated a spherical-shaped morphology. C The expression of the CD63, CD81, and CD9 exosome-specific surface markers in BM-MSC exosomes was examined using flow cytometry

  • Fig. 3 The impact of BM-MSC exosomes on the JAK/STAT gene expression of HL-60 cells. JAK2, STAT3, and STAT5 levels were notably reduced in HL-60 cells following treatment with 100 μg/mL of exosomes. The expression levels were normalized using the GAPDH housekeeping gene. Statistical significance was observed (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001) compared to the control group (n = 3)


Reference

1. Sha C, Jia G, Jingjing Z, Yapeng H, Zhi L, Guanghui X. 2020; miR-486 is involved in the pathogenesis of acute myeloid leukemia by regulating JAK-STAT signaling. DOI: 10.1007/s00210-020-01892-4. PMID: 32472154.
Article
2. Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. 2019; Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 36:70–87. DOI: 10.1016/j.blre.2019.04.005. PMID: 31101526.
Article
3. Bolandi SM, Pakjoo M, Beigi P, Kiani M. 2021; A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia. cells. 10(11):2833. DOI: 10.3390/cells10112833. PMID: 34831055. PMCID: PMC8616250. PMID: 1faed8829cc941118209d54de522aa73.
Article
4. Lee HJ, Daver N, Kantarjian HM, Verstovsek S, Ravandi F. The Role of JAK Pathway Dysregulation in the Pathogenesis and Treatment of Acute Myeloid Leukemia. 327–35. DOI: 10.1158/1078-0432.CCR-12-2087. PMID: 23209034.
Article
5. Habbel J, Arnold L, Chen Y, Michael M, Bruderek K, Brandau S, et al. 2020; Inflammation-driven activation of JAK/ STAT signaling reversibly accelerates acute myeloid leukemia in vitro. 4(13):DOI: 10.1182/bloodadvances.2019001292. PMID: 32614965. PMCID: PMC7362361.
6. Wei X, Yang X, Han Z, Qu F, Shao L, Shi Y. 2013; Mesenchymal stem cells : a new trend for cell therapy. Nat Publ Gr. 747–54. DOI: 10.1038/aps.2013.50. PMID: 23736003. PMCID: PMC4002895.
7. Sun L, Yang N, Chen B, Bei Y, Kang Z, Zhang C, et al. 2023; A novel mesenchymal stem cell-based regimen for acute myeloid leukemia differentiation therapy. Acta Pharm Sin B. 13(7):3027–42. Available from: https://doi.org/10.1016/j.apsb.2023.05.007. DOI: 10.1016/j.apsb.2023.05.007. PMID: 37521858. PMCID: PMC10372914.
Article
8. Hao L, Sun H, Wang J, Wang T. 2012; Mesenchymal stromal cells for cell therapy : besides supporting hematopoiesis. Int J Hematol. 95:34–46. DOI: 10.1007/s12185-011-0991-8. PMID: 22183780.
Article
9. Sarvar DP, Shamsasenjan K, Akbarzadehlaleh P. 2016; Mesenchymal stem cellderived exosomes: New opportunity in cell-free therapy. Adv Pharm Bull. 6(3):293–9. DOI: 10.15171/apb.2016.041. PMID: 27766213. PMCID: PMC5071792.
Article
10. Hofer HR, Tuan RS. 2016; Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther. 7(1):1–14. Available from: https://doi.org/10.1186/s13287-016-0394-0. DOI: 10.1186/s13287-016-0394-0. PMID: 27612948. PMCID: PMC5016979.
Article
11. Shi ZY, Yang XX, Malichewe CY, Li YS, Guo XL. 2020; Exosomal microRNAs-mediated intercellular communication and exosome-based cancer treatment. Int J Biol Macromol. 158:530–41. Available from: https://doi.org/10.1016/j.ijbiomac.2020.04.228. DOI: 10.1016/j.ijbiomac.2020.04.228. PMID: 32360962.
Article
12. Zhang X, Yang Y, Yang Y, Chen H, Tu H, Li J. 2020; Exosomes from Bone Marrow Microenvironment-Derived Mesenchymal Stem Cells Affect CML Cells Growth and Promote Drug Resistance to Tyrosine Kinase Inhibitors. Stem Cells Int. 2020:DOI: 10.1155/2020/8890201. PMID: 33414831. PMCID: PMC7752271. PMID: ad5839986851468daf00be40612b3636.
Article
13. Zhang F, Lu Y, Wang M, Zhu J, Li J, Zhang P, et al. 2020; Exosomes derived from human bone marrow mesenchymal stem cells transfer miR-222-3p to suppress acute myeloid leukemia cell proliferation by targeting IRF2/INPP4B. Mol Cell Probes. 51:101513. DOI: 10.1016/j.mcp.2020.101513. PMID: 31968218.
Article
14. Hu X. 2021; The JAK/ STAT signaling pathway : from bench to clinic. Signal Transduct Target Ther. DOI: 10.1038/s41392-021-00791-1. PMID: 34824210. PMCID: PMC8617206. PMID: 95f80005b470457aa1e03054a2091234.
15. Rah B, Rather A, Bhat GR, Baba AB, Mushtaq I, Farooq M. 2022; JAK/ STAT Signaling : Molecular Targets , Therapeutic Opportunities , and Limitations of Targeted Inhibitions in Solid Malignancies. Front Pharmacol. 13:DOI: 10.3389/fphar.2022.821344. PMID: 35401182. PMCID: PMC8987160. PMID: 9ed427f9d6e84e68ac385200338232fb.
Article
16. Al-Rawashde FA, Johan MF, Taib WRW, Ismail I, Johari SATT, Almajali B, et al. 2021; Thymoquinone inhibits growth of acute myeloid leukemia cells through reversal SHP-1 and SOCS-3 hypermethylation: In vitro and in silico evaluation. Pharmaceuticals. 14(12):1287. DOI: 10.3390/ph14121287. PMID: 34959687. PMCID: PMC8703481. PMID: 052f0ad5009f4de5b866811ac4138394.
Article
17. Erdogan F, Radu TB, Orlova A, Qadree AK, de Araujo ED, Israelian J, et al. 2022; JAK-STAT core cancer pathway: An integrative cancer interactome analysis. J Cell Mol Med. 26(7):2049–62. DOI: 10.1111/jcmm.17228. PMID: 35229974. PMCID: PMC8980946.
Article
18. Liu Y, Wang W, Zhang J, Gao S, Xu T, Yin Y. 2023; JAK/STAT signaling in diabetic kidney disease. Front Cell Dev Biol. 11:DOI: 10.3389/fcell.2023.1233259. PMID: 37635867. PMCID: PMC10450957. PMID: 64774295786b44f8858b83f6f0836ffe.
Article
19. Valle-Mendiola A, Gutiérrez-Hoya A, Soto-Cruz I. 2023; JAK/STAT Signaling and Cervical Cancer: From the Cell Surface to the Nucleus. Genes (Basel). 14(6):1141. DOI: 10.3390/genes14061141. PMID: 37372319. PMCID: PMC10298571.
Article
20. Hu X, Li J, Fu M, Zhao X, Wang W. 2021; The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 6(1):402. DOI: 10.1038/s41392-021-00791-1. PMID: 34824210. PMCID: PMC8617206. PMID: 95f80005b470457aa1e03054a2091234.
Article
21. Fasouli ES, Katsantoni E. 2021; JAK-STAT in Early Hematopoiesis and Leukemia. 9:DOI: 10.3389/fcell.2021.669363. PMID: 34055801. PMCID: PMC8160090. PMID: f8409f50d3374919aeb2cf6f8d12797d.
Article
22. Faderl S, Ferrajoli A, Harris D, Van Q, Kantarjian HM, Estrov Z. 2007; Atiprimod blocks phosphorylation of JAK-STAT and inhibits proliferation of acute myeloid leukemia ( AML ) cells. Leuk Res. 31:91–5. DOI: 10.1016/j.leukres.2006.05.027. PMID: 16828865.
23. Mesbahi Y, Zekri A, Gha SH, Sadat P, Ahmadian S, Ghavamzadeh A. 2018; Blockade of JAK2/STAT3 intensifies the anti-tumor activity of arsenic trioxide in acute myeloid leukemia cells : Novel synergistic mechanism via the mediation of reactive oxygen species. Eur J Pharmacol. 834(July):65–76. DOI: 10.1016/j.ejphar.2018.07.010. PMID: 30012499.
Article
24. Jalilivand S, Izadirad M, Vazifeh Shiran N, Gharehbaghian A, Naserian S. 2024; The effect of bone marrow mesenchymal stromal cell exosomes on acute myeloid leukemia's biological functions: a focus on the potential role of LncRNAs. Clin Exp Med. 24(1):Available from: https://doi.org/10.1007/s10238-024-01364-6. DOI: 10.1007/s10238-024-01364-6. PMID: 38777995. PMCID: PMC11111499.
Article
25. Ahmed M, Pollyea DA. 2023; Lower intensity regimens for acute myeloid leukemia: opportunities and challenges. Leuk Lymphoma. 64(1):66–70. DOI: 10.1080/10428194.2022.2136960. PMID: 36323295.
Article
26. Gemayel J, Chaker D, El Hachem G, Mhanna M, Salemeh R, Hanna C, et al. 2023; Mesenchymal stem cells-derived secretome and extracellular vesicles: perspective and challenges in cancer therapy and clinical applications. Clin Transl Oncol. 1–13. DOI: 10.1007/s12094-023-03115-7. PMID: 36808392.
Article
27. Song N, Gao L, Qiu H, Huang C, Cheng H, Zhou H, et al. 2015; Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant. Int J Mol Med. 36(1):139–49. DOI: 10.3892/ijmm.2015.2191. PMID: 25901937. PMCID: PMC4494598.
Article
28. Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C, et al. 2009; Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia. 23(5):925–33. DOI: 10.1038/leu.2008.384. PMID: 19148141.
Article
29. Yuan Y, Tan S, Wang H, Zhu J, Li J, Zhang P, et al. 2023; Mesenchymal stem cellderived exosomal miRNA-222-3p increases Th1/Th2 ratio and promotes apoptosis of acute myeloid leukemia cells. Anal Cell Pathol. 2023:DOI: 10.1155/2023/4024887. PMID: 37621743. PMCID: PMC10447000. PMID: 49e01547a2b4420c877b61ca52c8cb11.
Article
30. Weng Z, Zhang B, Wu C, Yu F, Han B, Li B, et al. 2021; Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer. J Hematol Oncol. 14:1–22. DOI: 10.1186/s13045-021-01141-y. PMID: 34479611. PMCID: PMC8414028. PMID: c27eae41d0294a53b1d27c18b61e2f39.
Article
31. Xunian Z, Kalluri R. 2020; Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Sci. 111(9):3100–10. DOI: 10.1111/cas.14563. PMID: 32639675. PMCID: PMC7469857.
Article
32. Xiong J, Hu H, Guo R, Wang H, Jiang H. 2021; Mesenchymal stem cell exosomes as a new strategy for the treatment of diabetes complications. Front Endocrinol (Lausanne). 12:646233. DOI: 10.3389/fendo.2021.646233. PMID: 33995278. PMCID: PMC8117220. PMID: e64084a6af794c06a4ed8fb78227e44f.
Article
33. Ghasempour E, Hesami S, Movahed E, Keshel SH, Doroudian M. 2022; Mesenchymal stem cell-derived exosomes as a new therapeutic strategy in the brain tumors. Stem Cell Res Ther. 13(1):527. DOI: 10.1186/s13287-022-03212-4. PMID: 36536420. PMCID: PMC9764546. PMID: ac9cbea359644f83af362af4bb64e70b.
Article
34. Zhang F, Lu Y, Wang M, Zhu J, Li J, Zhang P, et al. 2020; Exosomes derived from human bone marrow mesenchymal stem cells transfer miR-222-3p to suppress acute myeloid leukemia cell proliferation by targeting IRF2/INPP4B. Mol Cell Probes. 51:DOI: 10.1016/j.mcp.2020.101513. PMID: 31968218.
Article
35. Xu Y-C, Lin Y-S, Zhang L, Lu Y, Sun Y-L, Fang Z-G, et al. 2020; MicroRNAs of bone marrow mesenchymal stem cell-derived exosomes regulate acute myeloid leukemia cell proliferation and apoptosis. Chin Med J (Engl). 133(23):2829–39. DOI: 10.1097/CM9.0000000000001138. PMID: 33273332. PMCID: PMC10631584. PMID: d9b99c08e5c044f9858000fa5c1f2807.
Article
36. Jiang D, Wu X, Sun X, Tan W, Dai X, Xie Y, et al. 2022; Bone mesenchymal stem cell-derived exosomal microRNA-7-5p inhibits progression of acute myeloid leukemia by targeting OSBPL11. J Nanobiotechnology. 20(1):1–19. DOI: 10.1186/s12951-021-01206-7. PMID: 35012554. PMCID: PMC8744354. PMID: dfca01e09707436d939a2a37be0afddf.
Article
37. Cheng H, Ding J, Tang G, Huang A, Gao L, Yang J, et al. 2021; Human mesenchymal stem cells derived exosomes inhibit the growth of acute myeloid leukemia cells via regulating miR-23b-5p/TRIM14 pathway. Mol Med. 27(1):1–10. DOI: 10.1186/s10020-021-00393-1. PMID: 34656078. PMCID: PMC8520262. PMID: d2eb1d3f29454492b7fd8a2e5efa7573.
Article
38. Wen J, Chen Y, Liao C, Ma X, Wang M, Li Q, et al. 2023; Engineered mesenchymal stem cell exosomes loaded with miR-34c-5p selectively promote eradication of acute myeloid leukemia stem cells. Cancer Lett. 575:216407. DOI: 10.1016/j.canlet.2023.216407. PMID: 37769796.
Article
39. Xu S, Zhu Y, Meng J, Li C, Zhu Z, Wang C, et al. 2023; 2-Aminopyrimidine derivatives as selective dual inhibitors of JAK2 and FLT3 for the treatment of acute myeloid leukemia. Bioorg Chem. 134:106442. DOI: 10.1016/j.bioorg.2023.106442. PMID: 36878064.
Article
40. Li F, Lu Z-Y, Xue Y-T, Liu Y, Cao J, Sun Z-T, et al. 2023; Molecular basis of JAK2 H608Y and H608N mutations in the pathology of acute myeloid leukemia. Int J Biol Macromol. 229:247–59. DOI: 10.1016/j.ijbiomac.2022.12.121. PMID: 36529225.
Article
41. Ikezoe T, Kojima S, Furihata M, Yang J, Nishioka C, Takeuchi A, et al. 2011; Expression of p-JAK2 predicts clinical outcome and is a potential molecular target of acute myelogenous leukemia. Int J cancer. 129(10):2512–21. DOI: 10.1002/ijc.25910. PMID: 21207414.
Article
42. Cook AM, Li L, Ho Y, Lin A, Li L, Stein A, et al. 2014; Role of altered growth factor receptor-mediated JAK2 signaling in growth and maintenance of human acute myeloid leukemia stem cells. Blood, J Am Soc Hematol. 123(18):2826–37. DOI: 10.1182/blood-2013-05-505735. PMID: 24668492. PMCID: PMC4007609.
Article
43. Tong H, Ren Y, Zhang F, Jin J. 2008; Homoharringtonine affects the JAK2-STAT5 signal pathway through alteration of protein tyrosine kinase phosphorylation in acute myeloid leukemia cells. 259–66. DOI: 10.1111/j.1600-0609.2008.01116.x. PMID: 18616510.
Article
44. Mohammadi Kian M, Salemi M, Bahadoran M, Haghi A, Dashti N, Mohammadi S, et al. 2020; Curcumin combined with thalidomide reduces expression of STAT3 and Bcl-xL, leading to apoptosis in acute myeloid leukemia cell lines. Drug Des Devel Ther. 185–94. DOI: 10.2147/DDDT.S228610. PMID: 32021103. PMCID: PMC6970263.
45. Moser B, Edtmayer S, Witalisz-Siepracka A, Stoiber D. 2021; The ups and downs of STAT inhibition in acute myeloid leukemia. Biomedicines. 9(8):1051. DOI: 10.3390/biomedicines9081051. PMID: 34440253. PMCID: PMC8392322. PMID: 2194938ddddf475fba9fc1e024fb4c5c.
Article
46. Zhao S, Guo J, Zhao Y, Fei C, Zheng Q, Li X, et al. 2016; Chidamide, a novel histone deacetylase inhibitor, inhibits the viability of MDS and AML cells by suppressing JAK2/STAT3 signaling. Am J Transl Res. 8(7):3169. PMID: 27508038. PMCID: PMC4969454.
47. Huang Z-W, Zhang X-N, Zhang L, Liu L-L, Zhang J-W, Sun Y-X, et al. 2023; STAT5 promotes PD-L1 expression by facilitating histone lactylation to drive immunosuppression in acute myeloid leukemia. Signal Transduct Target Ther. 8(1):391. DOI: 10.1038/s41392-023-01605-2. PMID: 37777506. PMCID: PMC10542808. PMID: 2bb9b8ad17ca4dce91e2e77a5c77b708.
Article
48. Wingelhofer B, Maurer B, Heyes EC, Cumaraswamy AA, Berger-Becvar A, de Araujo ED, et al. 2018; Pharmacologic inhibition of STAT5 in acute myeloid leukemia. Leukemia. 32(5):1135–46. DOI: 10.1038/s41375-017-0005-9. PMID: 29472718. PMCID: PMC5940656.
Article
Full Text Links
  • BR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr