2. Baroudi H, Brock KK, Cao W, Chen X, Chung C, Court LE, et al. 2023; Automated contouring and planning in radiation therapy: what is 'clinically acceptable'? Diagnostics (Basel). 13:667. DOI:
10.3390/diagnostics13040667. PMID:
36832155. PMCID:
PMC9955359.
4. Fu Y, Zhang H, Morris ED, Glide-Hurst CK, Pai S, Traverso A, et al. 2022; Artificial intelligence in radiation therapy. IEEE Trans Radiat Plasma Med Sci. 6:158–181. DOI:
10.1109/TRPMS.2021.3107454. PMID:
35992632. PMCID:
PMC9385128.
5. Jeong C, Goh Y, Kwak J. 2024; Challenges and opportunities to integrate artificial intelligence in radiation oncology: a narrative review. Ewha Med J. 47:e49. DOI:
10.12771/emj.2024.e49.
6. Krishnamurthy R, Mummudi N, Goda JS, Chopra S, Heijmen B, Swamidas J. 2022; Using artificial intelligence for optimization of the processes and resource utilization in radiotherapy. JCO Glob Oncol. 8:e2100393. DOI:
10.1200/GO.21.00393. PMID:
36395438. PMCID:
PMC10166445.
7. Kawamura M, Kamomae T, Yanagawa M, Kamagata K, Fujita S, Ueda D, et al. 2024; Revolutionizing radiation therapy: the role of AI in clinical practice. J Radiat Res. 65:1–9. DOI:
10.1093/jrr/rrad090. PMID:
37996085. PMCID:
PMC10803173.
8. Wong J, Huang V, Wells D, Giambattista J, Giambattista J, Kolbeck C, et al. 2021; Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers. Radiat Oncol. 16:101. DOI:
10.1186/s13014-021-01831-4. PMID:
34103062. PMCID:
PMC8186196.
9. Erdur AC, Rusche D, Scholz D, Kiechle J, Fischer S, Llorián-Salvador Ó, et al. 2014; Deep learning for autosegmentation for radiotherapy treatment planning: state-of-the-art and novel perspectives. Strahlenther Onkol. doi: 10.1007/s00066-024-02262-2. DOI:
10.1007/s00066-024-02262-2. PMID:
39105745.
10. Doolan PJ, Charalambous S, Roussakis Y, Leczynski A, Peratikou M, Benjamin M, et al. 2023; A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy. Front Oncol. 13:1213068. DOI:
10.3389/fonc.2023.1213068. PMID:
37601695. PMCID:
PMC10436522.
11. Hoque SMH, Pirrone G, Matrone F, Donofrio A, Fanetti G, Caroli A, et al. 2023; Clinical use of a commercial artificial intelligence-based software for autocontouring in radiation therapy: geometric performance and dosimetric impact. Cancers (Basel). 15:5735. DOI:
10.3390/cancers15245735. PMID:
38136281. PMCID:
PMC10741804.
12. Shi F, Hu W, Wu J, Han M, Wang J, Zhang W, et al. 2022; Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy. Nat Commun. 13:6566. DOI:
10.1038/s41467-022-34257-x. PMID:
36323677. PMCID:
PMC9630370.
13. Smine Z, Poeta S, De Caluwé A, Desmet A, Garibaldi C, Brou Boni K, et al. 2025; Automated segmentation in planning-CT for breast cancer radiotherapy: a review of recent advances. Radiother Oncol. 202:110615. DOI:
10.1016/j.radonc.2024.110615. PMID:
39489430.
14. Warren S, Richmond N, Wowk A, Wilkinson M, Wright K. 2023; AI segmentation as a quality improvement tool in radiotherapy planning for breast cancer. IPEM Transl. 6-8:100020. DOI:
10.1016/j.ipemt.2023.100020.
15. Kouhen F, Gouach HE, Saidi K, Dahbi Z, Errafiy N, Elmarrachi H, et al. 2024; Synergizing expertise and technology: the artificial intelligence revolution in radiotherapy for personalized and precise cancer treatment. Gulf J Oncolog. 1:94–102. DOI:
10.20944/preprints202308.0992.v1.
16. Ren J, Eriksen JG, Nijkamp J, Korreman SS. 2021; Comparing different CT, PET and MRI multi-modality image combinations for deep learning-based head and neck tumor segmentation. Acta Oncol. 60:1399–1406. DOI:
10.1080/0284186X.2021.1949034. PMID:
34264157.
17. Song J, Zheng J, Li P, Lu X, Zhu G, Shen P. 2021; An effective multimodal image fusion method using MRI and PET for Alzheimer's disease diagnosis. Front Digit Health. 3:637386. DOI:
10.3389/fdgth.2021.637386. PMID:
34713109. PMCID:
PMC8521941.
18. Basu S, Singhal S, Singh D. 2024; A systematic literature review on multimodal medical image fusion. Multimed Tools Appl. 83:15845–15913. DOI:
10.1007/s11042-023-15913-w.
19. Yang J, Soltan AAS, Clifton DA. 2022; Machine learning generalizability across healthcare settings: insights from multi-site COVID-19 screening. NPJ Digit Med. 5:69. DOI:
10.1038/s41746-022-00614-9. PMID:
35672368. PMCID:
PMC9174159.
20. Tripathi S, Gabriel K, Dheer S, Parajuli A, Augustin AI, Elahi A, et al. 2023; Understanding biases and disparities in radiology AI datasets: a review. J Am Coll Radiol. 20:836–841. DOI:
10.1016/j.jacr.2023.06.015. PMID:
37454752.