Prog Med Phys.  2024 Dec;35(4):135-144. 10.14316/pmp.2024.35.4.135.

Evaluating the Influence of Scan Timing on Dosimetric Accuracy in EBT3 and EBT4 Radiochromic Films

Affiliations
  • 1Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea

Abstract

Purpose
This study compares the dosimetric properties of EBT3 and EBT4 GAFchromic films in transmission and reflection scanning modes, focusing on dose response, sensitivity, and postirradiation stability.
Methods
The EBT3 and EBT4 films were irradiated at doses of 0–10 Gy using a Varian TrueBeam linear accelerator at 6 MV. The films were scanned at intervals between 1 and 336 hours after irradiation in both transmission and reflection modes. Net optical density (NetOD) values from each scan were used to evaluate dose response and sensitivity, with calibration curves created for each film and scan mode. Dose differences between calculated and delivered doses were assessed over time.
Results
The EBT3 and EBT4 films exhibited similar dose–response curves and stable NetOD values across both scanning modes. However, EBT4 exhibited reduced sensitivity variability in response to dose changes. After irradiation, NetOD values increased up to 24 hours before stabilizing, suggesting that a 24-hour scan time is sufficient for consistent measurements. Dose differences between films and modes remained within ±4%.
Conclusions
EBT4 offers comparable dosimetric performance to EBT3, with additional benefits, such as improved dose–response linearity and reduced sensitivity fluctuations. The findings indicate that EBT4 can serve as a reliable successor to EBT3.

Keyword

Radiochromic film; Scan timing; Postirradiation stability; Film dosimetry; Dose sensitivity

Figure

  • Fig. 1 Net optical density (NetOD) changes over time for the EBT3 and EBT4 films according to scan time and mode. (a) EBT3 transmission represents EBT3 scanned in the transmission mode, (b) EBT4 transmission represents EBT4 scanned in the transmission mode, (c) EBT3 reflection represents EBT3 scanned in the reflection mode, and (d) EBT4 reflection represents EBT4 scanned in the reflection mode. a.u, arbitrary units.

  • Fig. 2 (a) EBT3 transmission, (b) EBT4 transmission, (c) EBT3 reflection, and (d) EBT4 reflection. Dose–response curves for the EBT3 and EBT4 films according to scan time and mode. NetOD, net optical density; a.u, arbitrary units.

  • Fig. 3 Dose sensitivity for the EBT3 and EBT4 films according to scan mode for the calibration film.

  • Fig. 4 (a) EBT3 transmission, (b) EBT4 transmission, (c) EBT3 reflection, and (d) EBT4 reflection. Box plot showing the mean dose difference between the delivered and calculated doses for the EBT3 and EBT4 films across scan modes over time. The graph illustrates the distribution of dose differences in the 0–10 Gy range as a function of time.


Reference

References

1. Devic S. 2011; Radiochromic film dosimetry: past, present, and future. Phys Med. 27:122–134. DOI: 10.1016/j.ejmp.2010.10.001. PMID: 21050785.
2. Khachonkham S, Dreindl R, Heilemann G, Lechner W, Fuchs H, Palmans H, et al. 2018; Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams. Phys Med Biol. 63:065007. DOI: 10.1088/1361-6560/aab1ee. PMID: 29474189.
3. Palmer AL, Dimitriadis A, Nisbet A, Clark CH. 2015; Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification. Phys Med Biol. 60:8741–8752. DOI: 10.1088/0031-9155/60/22/8741. PMID: 26512917.
4. Bassi S, Berrigan L, Zuchora A, Fahy L, Moore M. 2020; End-to-end dosimetric audit: a novel procedure developed for Irish HDR brachytherapy centres. Phys Med. 80:221–229. DOI: 10.1016/j.ejmp.2020.10.005. PMID: 33190078.
5. Jung S, Cho JD, Kim JI, Park JM, Choi CH. 2021; Dosimetric characteristics of flexible radiochromic film based on LiPCDA. Prog Med Phys. 32:179–184. DOI: 10.14316/pmp.2021.32.4.179.
6. Schoenfeld AA, Wieker S, Harder D, Poppe B. 2016; Changes of the optical characteristics of radiochromic films in the transition from EBT3 to EBT-XD films. Phys Med Biol. 61:5426–5442. DOI: 10.1088/0031-9155/61/14/5426. PMID: 27367839.
7. Sorriaux J, Kacperek A, Rossomme S, Lee JA, Bertrand D, Vynckier S, et al. 2013; Evaluation of Gafchromic® EBT3 films characteristics in therapy photon, electron and proton beams. Phys Med. 29:599–606. DOI: 10.1016/j.ejmp.2012.10.001. PMID: 23107430.
8. Miura H, Ozawa S, Okazue T, Enosaki T, Nagata Y. 2023; Characterization of scanning orientation and lateral response artifact for EBT4 Gafchromic film. J Appl Clin Med Phys. 24:e13992. DOI: 10.1002/acm2.13992. PMID: 37086445. PMCID: PMC10402671.
9. Cho JD, Choi CH, Nam H, Kim JI. 2024; Improved sensitivity and ambient light stability of radiochromic plastic dosimeters through composite azo compounds. Radiat Phys Chem. 223:111891. DOI: 10.1016/j.radphyschem.2024.111891.
10. Cho JD, Son J, Choi CH, Kim JS, Wu HG, Park JM, et al. 2020; Improvement in sensitivity of radiochromic 3D dosimeter based on rigid polyurethane resin by incorporating tartrazine. PLoS One. 15:e0230410. DOI: 10.1371/journal.pone.0230410. PMID: 32176733. PMCID: PMC7075553.
11. Cho JD, Jin H, Jung S, Son J, Choi CH, Park JM, et al. 2023; Development of a quasi-3D dosimeter using radiochromic plastic for patient-specific quality assurance. Med Phys. 50:6624–6636. DOI: 10.1002/mp.16541. PMID: 37408321.
12. Akdeniz Y. 2024; Comparative analysis of dosimetric uncertainty using GafchromicTM EBT4 and EBT3 films in radiochromic film dosimetry. Radiat Phys Chem. 220:111723. DOI: 10.1016/j.radphyschem.2024.111723.
13. Chan MF, Park J, Aydin R, Lim SB. 2023; Technical note: energy dependence of the Gafchromic EBT4 film: dose-response curves for 70 kV, 6 MV, 6 MV FFF, 10 MV FFF, and 15 MV x-ray beams. Med Phys. 50:3738–3745. DOI: 10.1002/mp.16240. PMID: 36695666. PMCID: PMC10635410.
14. Palmer AL, Nash D, Polak W, Wilby S. 2023; Evaluation of a new radiochromic film dosimeter, Gafchomic EBT4, for VMAT, SABR and HDR treatment delivery verification. Phys Med Biol. 68:DOI: 10.1088/1361-6560/aceb48. PMID: 37499683.
15. Niroomand-Rad A, Chiu-Tsao ST, Grams MP, Lewis DF, Soares CG, Van Battum LJ, et al. 2020; Report of AAPM task group 235 radiochromic film dosimetry: an update to TG-55. Med Phys. 47:5986–6025. DOI: 10.1002/mp.14497. PMID: 32990328.
16. Devic S, Tomic N, Lewis D. 2016; Reference radiochromic film dosimetry: review of technical aspects. Phys Med. 32:541–556. DOI: 10.1016/j.ejmp.2016.02.008. PMID: 27020097.
17. Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, et al. 1999; AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 26:1847–1870. DOI: 10.1118/1.598691. PMID: 10505874.
18. Cho JD, Park JM, Choi CH, Kim JI, Wu HG, Park SY. 2017; Implementation of AAPM's TG-51 protocol on Co-60 MRI-guided radiation therapy system. Prog Med Phys. 28:190–196. DOI: 10.14316/pmp.2017.28.4.190.
19. Cho JD, Chun M, Son J, An HJ, Yoon J, Choi CH, et al. 2018; Efficient verification of X-ray target replacement for the C-series high energy linear accelerator. Prog Med Phys. 29:92–100. DOI: 10.14316/pmp.2018.29.3.92.
20. Cho JD, Son J, Sung J, Choi CH, Kim JS, Wu HG, et al. 2020; Flexible film dosimeter for in vivo dosimetry. Med Phys. 47:3204–3213. DOI: 10.1002/mp.14162. PMID: 32248523.
21. Cho JD, Jung S, Kim JI, Choi CH. 2024; Improvement of performance for flexible film dosimeter by incorporating additive agents. Phys Med Biol. 69:DOI: 10.1088/1361-6560/ad39c1. PMID: 38565123.
22. Marroquin EY, Herrera González JA, Camacho López MA, Barajas JE, García-Garduño OA. 2016; Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density. J Appl Clin Med Phys. 17:466–481. DOI: 10.1120/jacmp.v17i5.6262. PMID: 27685125. PMCID: PMC5874103.
23. Massillon-JL G, Chiu-Tsao S, Domingo-Munoz I, Chan M. 2012; Energy dependence of the new gafchromic EBT3 film: dose response curves for 50 KV, 6 and 15 MV X-ray beams. Int J Med Phys Clin Eng Radiat Oncol. 1:60–65. DOI: 10.4236/ijmpcero.2012.12008.
24. Upadhyay R, Paulino AC. 2024; Risk-stratified radiotherapy in pediatric cancer. Cancers (Basel). 16:DOI: 10.3390/cancers16203530. PMID: 39456624. PMCID: PMC11506666.
25. Chinnaiya D, Mudhana G. 2024; Assessment of stereotactic high-resolution detectors for stereotactic body radiotherapy: comparative analysis between myQA® SRS and Gafchromic EBT-XD films. Radiat Environ Biophys. 63:203–214. DOI: 10.1007/s00411-024-01071-6. PMID: 38683360.
26. Lin H, Sheng X, Liu H, Zhang P, Liu Y, Zang C. 2023; Dosimetry of intensity-modulated radiation therapy and volumetric-modulated arc therapy techniques after modified radical mastectomy for breast cancer and hypofractionated intensity-modulated radiotherapy. J Cancer Res Ther. 19:1568–1574. DOI: 10.4103/jcrt.jcrt_51_23. PMID: 38156923.
27. Semeniuk O, Yu E, Rivard MJ. 2024; Current and emerging radiotherapy options for uveal melanoma. Cancers (Basel). 16:1074. DOI: 10.3390/cancers16051074. PMID: 38473430. PMCID: PMC10931396.
28. Papaconstadopoulos P, Hegyi G, Seuntjens J, Devic S. 2014; A protocol for EBT3 radiochromic film dosimetry using reflection scanning. Med Phys. 41:122101. DOI: 10.1118/1.4901308. PMID: 25471974.
29. Lewis D, Chan MF. 2015; Correcting lateral response artifacts from flatbed scanners for radiochromic film dosimetry. Med Phys. 42:416–429. DOI: 10.1118/1.4903758. PMID: 25563282. PMCID: PMC5148133.
Full Text Links
  • PMP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr