2. Zampieri M, Salvi S, Fumagalli C, Argirò A, Zocchi C, Del Franco A, et al. 2023; Clinical scenarios of hypertrophic cardiomyopathy-related mortality: relevance of age and stage of disease at presentation. Int J Cardiol. 374:65–72. DOI:
10.1016/j.ijcard.2022.12.056. PMID:
36621577.
3. Arbelo E, Protonotarios A, Gimeno JR, Arbustini E, Barriales-Villa R, Basso C, et al. 2023; 2023 ESC guidelines for the management of cardiomyopathies. Eur Heart J. 44:3503–626. DOI:
10.1093/eurheartj/ehad194. PMID:
37622657.
5. Walsh R, Buchan R, Wilk A, John S, Felkin LE, Thomson KL, et al. 2017; Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes. Eur Heart J. 38:3461–8. DOI:
10.1093/eurheartj/ehw603. PMID:
28082330. PMCID:
PMC5837460.
7. Janin A, Chanavat V, Rollat-Farnier PA, Bardel C, Nguyen K, Chevalier P, et al. 2020; Whole MYBPC3 NGS sequencing as a molecular strategy to improve the efficiency of molecular diagnosis of patients with hypertrophic cardiomyopathy. Hum Mutat. 41:465–75. DOI:
10.1002/humu.23944. PMID:
31730716.
9. Lopes LR, Barbosa P, Torrado M, Quinn E, Merino A, Ochoa JP, et al. 2020; Cryptic splice-altering variants in
MYBPC3 are a prevalent cause of hypertrophic cardiomyopathy. Circ Genom Precis Med. 13:e002905. DOI:
10.1161/CIRCGEN.120.002905. PMID:
32396390.
10. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. 2011; Integrative genomics viewer. Nat Biotechnol. 29:24–6. DOI:
10.1038/nbt.1754. PMID:
21221095. PMCID:
PMC3346182.
12. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. 2019; Predicting splicing from primary sequence with deep learning. Cell. 176:535–48.e24. DOI:
10.1016/j.cell.2018.12.015. PMID:
30661751.
13. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. 2015; Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 17:405–24. DOI:
10.1038/gim.2015.30. PMID:
25741868. PMCID:
PMC4544753.
14. Ustianenko D, Weyn-Vanhentenryck SM, Zhang C. 2017; Microexons: discovery, regulation, and function. Wiley Interdiscip Rev RNA. 8:0.1002/wrna.1418. DOI:
10.1002/wrna.1418. PMID:
28188674. PMCID:
PMC5863539.
15. Carrier L, Bonne G, Bährend E, Yu B, Richard P, Niel F, et al. 1997; Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ Res. 80:427–34. DOI:
10.1161/01.res.0000435859.24609.b3. PMID:
9048664.
16. Oakley CE, Hambly BD, Curmi PMG, Brown LJ. 2004; Myosin binding protein C: structural abnormalities in familial hypertrophic cardiomyopathy. Cell Res. 14:95–110. DOI:
10.1038/sj.cr.7290208. PMID:
15115610.
17. Sterner DA, Berget SM. 1993; In vivo recognition of a vertebrate mini-exon as an exon-intron-exon unit. Mol Cell Biol. 13:2677–87. DOI:
10.1128/MCB.13.5.2677. PMID:
7682652. PMCID:
PMC359639.
18. Carlo T, Sterner DA, Berget SM. 1996; An intron splicing enhancer containing a G-rich repeat facilitates inclusion of a vertebrate micro-exon. RNA. 2:342–53. DOI:
10.7717/peerj.14824/fig-3. PMID:
8634915. PMCID:
PMC1369377.
19. Frank-Hansen R, Page SP, Syrris P, McKenna WJ, Christiansen M, Andersen PS. 2008; Micro-exons of the cardiac myosin binding protein C gene: flanking introns contain a disproportionately large number of hypertrophic cardiomyopathy mutations. Eur J Hum Genet. 16:1062–9. DOI:
10.1038/ejhg.2008.52. PMID:
18337725.