1. Huygh J, Peeters Y, Bernards J, Malbrain ML. Hemodynamic monitoring in the critically ill: an overview of current cardiac output monitoring methods. F1000Res. 2016; 5:F1000 Faculty Rev-2855.
Article
2. Youssef N, Whitlock RP. The routine use of the pulmonary artery catheter should be abandoned. Can J Cardiol. 2017; 33:135–41.
Article
3. Arya VK, Al-Moustadi W, Dutta V. Cardiac output monitoring - invasive and noninvasive. Curr Opin Crit Care. 2022; 28:340–7.
Article
4. Argueta E, Berdine G, Pena C, Nugent KM. FloTrac® monitoring system: what are its uses in critically ill medical patients? Am J Med Sci. 2015; 349:352–6.
5. McLean AS, Huang SJ, Kot M, Rajamani A, Hoyling L. Comparison of cardiac output measurements in critically ill patients: FloTrac/Vigileo vs transthoracic Doppler echocardiography. Anaesth Intensive Care. 2011; 39:590–8.
Article
6. Nuttall G, Burckhardt J, Hadley A, Kane S, Kor D, Marienau MS, et al. Surgical and patient risk factors for severe arterial line complications in adults. Anesthesiology. 2016; 124:590–7.
Article
7. Sangkum L, Liu GL, Yu L, Yan H, Kaye AD, Liu H. Minimally invasive or noninvasive cardiac output measurement: an update. J Anesth. 2016; 30:461–80.
Article
8. Ko RE, Jang GY, Chung CR, Lee JY, Oh TI, Suh GY, et al. Noninvasive beat-to-beat stroke volume measurements to determine preload responsiveness during mini-fluid challenge in a swine model: a preliminary study. Shock. 2021; 56:850–6.
Article
9. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999; 8:135–60.
Article
10. Kanazawa H, Maeda T, Miyazaki E, Hotta N, Ito S, Ohnishi Y. Accuracy and trending ability of blood pressure and cardiac index measured by ClearSight system in patients with reduced ejection fraction. J Cardiothorac Vasc Anesth. 2020; 34:3293–9.
Article
11. Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999; 15:85–91.
12. Saugel B, Grothe O, Wagner JY. Tracking changes in cardiac output: statistical considerations on the 4-quadrant plot and the polar plot methodology. Anesth Analg. 2015; 121:514–24.
13. Mehta Y, Arora D. Newer methods of cardiac output monitoring. World J Cardiol. 2014; 6:1022–9.
Article
14. Nguyen LS, Squara P. Non-invasive monitoring of cardiac output in critical care medicine. Front Med (Lausanne). 2017; 4:200.
Article
15. Putensen C, Hentze B, Muenster S, Muders T. Electrical impedance tomography for cardio-pulmonary monitoring. J Clin Med. 2019; 8:1176.
Article
16. Ulbrich M, Mühlsteff J, Leonhardt S, Walter M. Influence of physiological sources on the impedance cardiogram analyzed using 4D FEM simulations. Physiol Meas. 2014; 35:1451–68.
Article
17. Anand G, Yu Y, Lowe A, Kalra A. Bioimpedance analysis as a tool for hemodynamic monitoring: overview, methods and challenges. Physiol Meas. 2021; 42:03TR01.
Article
18. Sanders M, Servaas S, Slagt C. Accuracy and precision of non-invasive cardiac output monitoring by electrical cardiometry: a systematic review and meta-analysis. J Clin Monit Comput. 2020; 34:433–60.
Article
19. Van Wyk L, Gupta S, Lawrenson J, de Boode WP. Accuracy and trending ability of electrical biosensing technology for non-invasive cardiac output monitoring in neonates: a systematic qualitative review. Front Pediatr. 2022; 10:851850.
Article
20. Chung CR, Ko RE, Jang GY, Lee K, Suh GY, Kim Y, et al. Comparison of noninvasive cardiac output and stroke volume measurements using electrical impedance tomography with invasive methods in a swine model. Sci Rep. 2024; 14:2962.
Article
21. Braun F, Proença M, Lemay M, Bertschi M, Adler A, Thiran JP, et al. Limitations and challenges of EIT-based monitoring of stroke volume and pulmonary artery pressure. Physiol Meas. 2018; 39:014003.
Article