Korean J healthc assoc Infect Control Prev.  2024 Dec;29(2):82-92. 10.14192/kjicp.2024.29.2.82.

Epidemiology and Pandemic Risk Assessment of Avian Influenza

Affiliations
  • 1Division of Infectious Disease, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
  • 2Vaccine Innovation CenterKU Medicine, Seoul, Korea

Abstract

This paper examines the epidemiology and characteristics of avian influenza, with a focus on its potential to cause pandemics. Avian influenza, caused by type A influenza viruses, is an acute viral infection primarily affecting wild birds and rarely transmitting to humans. However, genetic reassortment and human-adaptive mutations can lead to emergence of novel strains with pandemic potential. This paper highlights the evolution and global spread of avian influenza viruses, particularly the H5 and H7 subtypes, which have occasionally infected humans and various mammals. Although predicting pandemics remains impossible, pandemic risk assessment plays a crucial role in prioritizing investments in influenza preparedness, such as vaccine development. It also identifies knowledge gaps, guides further research, ensures transparent decision-making based on scientific evidence, and promotes effective communication among policymakers, experts, and the public. This review provides insights from current pandemic risk assessments for various avian influenza viruses, emphasizing the importance of vigilant monitoring and pre-pandemic vaccine development to mitigate the threat of future influenza pandemic.

Keyword

Avian influenza; Pandemics; Genetic recombination; Risk assessment; Vaccines

Figure

  • Fig. 1 Natural circulation of influenza viruses.

  • Fig. 2 Pandemic risk assessment process for the novel influenza viruses by IRAT (Influenza Risk Assessment Tool) [37]. Abbreviation: SME, subject matter experts.

  • Fig. 3 Pandemic risk assessment results for the novel influenza viruses by Influenza Risk Assessment Tool (IRAT) [41].


Reference

1. Horimoto T, Kawaoka Y. 2001; Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev. 14:129–49. https://doi.org/10.1128/cmr.14.1.129-149.2001. DOI: 10.1128/CMR.14.1.129-149.2001. PMID: 11148006. PMCID: PMC88966.
2. Lee SH, Cho AY, Kim TH, Ahn SJ, Song JH, Lee H, et al. 2023; Novel highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus in wild birds, South Korea. Emerg Infect Dis. 29:1475–8. https://doi.org/10.3201/eid2907.221893. DOI: 10.3201/eid2907.221893.
3. Wu Y, Wu Y, Tefsen B, Shi Y, Gao GF. 2014; Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol. 22:183–91. https://doi.org/10.1016/j.tim.2014.01.010. DOI: 10.1016/j.tim.2014.01.010. PMID: 24582528. PMCID: PMC7127364.
4. de Vries E, Du W, Guo H, de Haan CAM. 2020; Influenza A virus hemagglutinin-neuraminidase-receptor balance: preserving virus motility. Trends Microbiol. 28:57–67. https://doi.org/10.1016/j.tim.2019.08.010. DOI: 10.1016/j.tim.2019.08.010. PMID: 31629602. PMCID: PMC7172302.
5. Braun KM, Haddock Iii LA, Crooks CM, Barry GL, Lalli J, Neumann G, et al. 2023; Avian H7N9 influenza viruses are evolutionarily constrained by stochastic processes during replication and transmission in mammals. Virus Evol. 9:vead004. https://doi.org/10.1093/ve/vead004. DOI: 10.1093/ve/vead004. PMID: 36814938. PMCID: PMC9939568.
6. Nicholson KG, Wood JM, Zambon M. 2003; Influenza. Lancet. 362:1733–45. https://doi.org/10.1016/s0140-6736(03)14854-4. DOI: 10.1016/S0140-6736(03)14854-4. PMID: 14643124.
7. Medina RA, García-Sastre A. 2011; Influenza A viruses: new research developments. Nat Rev Microbiol. 9:590–603. https://doi.org/10.1038/nrmicro2613. DOI: 10.1038/nrmicro2613. PMID: 21747392. PMCID: PMC10433403.
8. Kristensen C, Jensen HE, Trebbien R, Webby RJ, Larsen LE. 2024; The avian and human influenza A virus receptors sialic acid (SA)-α2,3 and SA-α2,6 are widely expressed in the bovine mammary gland. bioRxiv. https://doi.org/10.1101/2024.05.03.592326. DOI: 10.1101/2024.05.03.592326.
9. Reardon S. 2024; Bird flu in US cows: where will it end? Nature. 629:515–6. https://doi.org/10.1038/d41586-024-01333-9. DOI: 10.1038/d41586-024-01333-9. PMID: 38714908.
10. Capua I, Alexander DJ. 2004; Avian influenza: recent developments. Avian Pathol. 33:393–404. https://doi.org/10.1080/03079450410001724085. DOI: 10.1080/03079450410001724085. PMID: 15370036.
11. Webby RJ, Webster RG. 2001; Emergence of influenza A viruses. Philos Trans R Soc Lond B Biol Sci. 356:1817–28. https://doi.org/10.1098/rstb.2001.0997. DOI: 10.1098/rstb.2001.0997. PMID: 11779380. PMCID: PMC1088557.
12. Charostad J, Rezaei Zadeh Rukerd M, Mahmoudvand S, Bashash D, Hashemi SMA, Nakhaie M, et al. 2023; A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: an imminent threat at doorstep. Travel Med Infect Dis. 55:102638. https://doi.org/10.1016/j.tmaid.2023.102638. DOI: 10.1016/j.tmaid.2023.102638. PMID: 37652253.
13. Chan PK. 2002; Outbreak of avian influenza A(H5N1) virus infection in Hong Kong in 1997. Clin Infect Dis. 34 Suppl 2:S58–64. https://doi.org/10.1086/338820. DOI: 10.1086/338820. PMID: 11938498.
14. Kim HK, Jeong DG, Yoon SW. 2017; Recent outbreaks of highly pathogenic avian influenza viruses in South Korea. Clin Exp Vaccine Res. 6:95–103. https://doi.org/10.7774/cevr.2017.6.2.95. DOI: 10.7774/cevr.2017.6.2.95. PMID: 28775973. PMCID: PMC5540969.
15. Xie R, Edwards KM, Wille M, Wei X, Wong SS, Zanin M, et al. 2023; The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature. 622:810–7. https://doi.org/10.1038/s41586-023-06631-2. DOI: 10.1038/s41586-023-06631-2. PMID: 37853121.
16. Centers for Disease Control and Prevention. 2024. 2020-2024 Highlights in the history of avian influenza (bird flu) timeline. Available from: https://www.cdc.gov/bird-flu/avian-timeline/2020s.html. updated 2024 Apr 30; cited 2024 Aug 1.
17. Burrough ER, Magstadt DR, Petersen B, Timmermans SJ, Gauger PC, Zhang J, et al. 2024; Highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus infection in domestic dairy cattle and cats, United States, 2024. Emerg Infect Dis. 30:1335–43. https://doi.org/10.3201/eid3007.240508. DOI: 10.3201/eid3007.240508.
18. Cui P, Zhuang Y, Zhang Y, Chen L, Chen P, Li J, et al. 2024; Does pasteurization inactivate bird flu virus in milk? Emerg Microbes Infect. 13:2364732. https://doi.org/10.1080/22221751.2024.2364732. DOI: 10.1080/22221751.2024.2364732. PMID: 38832658. PMCID: PMC11182070.
19. Spackman E, Anderson N, Walker S, Suarez DL, Jones DR, McCoig A, et al. 2024; Inactivation of highly pathogenic avian influenza virus with high-temperature short time continuous flow pasteurization and virus detection in bulk milk tanks. J Food Prot. 87:100349. https://doi.org/10.1016/j.jfp.2024.100349. DOI: 10.1016/j.jfp.2024.100349. PMID: 39154916.
20. Hu X, Saxena A, Magstadt DR, Gauger PC, Burrough ER, Zhang J, et al. 2024; Genomic characterization of highly pathogenic avian influenza A H5N1 virus newly emerged in dairy cattle. Emerg Microbes Infect. 13:2380421. https://doi.org/10.1080/22221751.2024.2380421. DOI: 10.1080/22221751.2024.2380421. PMID: 39008278. PMCID: PMC11271078.
21. Kim Y, Fournié G, Métras R, Song D, Donnelly CA, Pfeiffer DU, et al. 2023; Lessons for cross-species viral transmission surveillance from highly pathogenic avian influenza Korean cat shelter outbreaks. Nat Commun. 14:6958. https://doi.org/10.1038/s41467-023-42738-w. DOI: 10.1038/s41467-023-42738-w. PMID: 37907544. PMCID: PMC10618209.
22. Lee K, Yeom M, Vu TTH, Do HQ, Na W, Lee M, et al. 2024; Characterization of highly pathogenic avian influenza A (H5N1) viruses isolated from cats in South Korea, 2023. Emerg Microbes Infect. 13:2290835. https://doi.org/10.1080/22221751.2023.2290835. DOI: 10.1080/22221751.2023.2290835. PMID: 38044871. PMCID: PMC10810616.
23. Liu WJ, Xiao H, Dai L, Liu D, Chen J, Qi X, et al. 2021; Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic. Front Med. 15:507–27. https://doi.org/10.1007/s11684-020-0814-5. DOI: 10.1007/s11684-020-0814-5. PMID: 33860875. PMCID: PMC8190734.
24. Bui C, Bethmont A, Chughtai AA, Gardner L, Sarkar S, Hassan S, et al. 2016; A systematic review of the comparative epidemiology of avian and human influenza A H5N1 and H7N9 - lessons and unanswered questions. Transbound Emerg Dis. 63:602–20. https://doi.org/10.1111/tbed.12327. DOI: 10.1111/tbed.12327. PMID: 25644240.
25. McCullers JA. 2008; Preparing for the next influenza pandemic. Pediatr Infect Dis J. 27(10 Suppl):S57–9. https://doi.org/10.1097/inf.0b013e3181684d41. DOI: 10.1097/INF.0b013e3181684d41. PMID: 18820579. PMCID: PMC2692546.
26. Min KD, Yoo DS. 2023; Ecological drivers for poultry farms predisposed to highly pathogenic avian influenza virus infection during the initial phase of the six outbreaks between 2010-2021: a nationwide study in South Korea. Front Vet Sci. 10:1278852. https://doi.org/10.3389/fvets.2023.1278852. DOI: 10.3389/fvets.2023.1278852. PMID: 38130434. PMCID: PMC10733472.
27. Zhou L, Chen E, Bao C, Xiang N, Wu J, Wu S, et al. 2018; Clusters of human infection and human-to-human transmission of avian influenza A(H7N9) virus, 2013-2017. Emerg Infect Dis. 24:397–400. https://doi.org/10.3201/eid2402.171565. DOI: 10.3201/eid2402.171565. PMID: 29165238. PMCID: PMC5782887.
28. Yang Y, Halloran ME, Sugimoto JD, Longini IM Jr. 2007; Detecting human-to-human transmission of avian influenza A (H5N1). Emerg Infect Dis. 13:1348–53. https://doi.org/10.3201/eid1309.070111. DOI: 10.3201/eid1309.070111. PMID: 18252106. PMCID: PMC2857285.
29. Du Ry van Beest Holle M, Meijer A, Koopmans M, de Jager CM. 2005; Human-to-human transmission of avian influenza A/H7N7, The Netherlands, 2003. Euro Surveill. 10:264–8. DOI: 10.2807/esm.10.12.00584-en. PMID: 29208126.
30. World Health Organization. 2024. Human infection with avian influenza A(H5N1) virus. Available from: https://www.who.int/westernpacific/wpro-emergencies/surveillance/avian-influenza. updated 2024 Jul 26; cited 2024 Aug 1.
31. Centers for Disease Control and Prevention. 2024. Technical report: June 2024 highly pathogenic avian influenza A(H5N1) viruses. Available from: https://www.cdc.gov/bird-flu/php/technical-report/. updated 2024 Jun 5; cited 2024 Aug 1.
32. European Centre for Disease Prevention and Control. 2017. Surveillance report: avian influenza overview (November 2017 - February 2018). Available from: https://www.ecdc.europa.eu/en/publications-data/surveillance-report-avian-influenza-overview-november-2017-february-2018. updated 2018 Mar 23; cited 2024 Aug 1.
33. Zeng X, Tian G, Shi J, Deng G, Li C, Chen H. 2018; Vaccination of poultry successfully eliminated human infection with H7N9 virus in China. Sci China Life Sci. 61:1465–73. DOI: 10.1007/s11427-018-9420-1. PMID: 30414008.
34. Cowling BJ, Jin L, Lau EH, Liao Q, Wu P, Jiang H, et al. 2013; Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases. Lancet. 382:129–37. DOI: 10.1016/S0140-6736(13)61171-X. PMID: 23803488.
35. World Health Organization. 2024. Avian influenza A(H5N2) - Mexico. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON524. updated 2024 Jun 14; cited 2024 Aug 1.
36. Mahase E. 2024; Bird flu: first person with confirmed H5N2 infection dies. BMJ. 385:q1260. DOI: 10.1136/bmj.q1260. PMID: 38849131.
37. Centers for Disease Control and Prevention. 2024. Influenza risk assessment tool (IRAT). Available from: https://www.cdc.gov/pandemic-flu/php/national-strategy/influenza-risk-assessment-tool.html. updated 2024 May 9; cited 2024 Aug 1.
38. World Health Organization. 2020. Tool for influenza pandemic risk assessment (TIPRA). Available from: https://www.who.int/teams/global-influenza-programme/avian-influenza/tool-for-influenza-pandemic-risk-assessment-(tipra). updated 2020 Jan 31; cited 2024 Aug 1.
39. De Nardi M, Hill A, von Dobschuetz S, Munoz O, Kosmider R, Dewe T, et al. 2014; Development of a risk assessment methodological framework for potentially pandemicinfluenza strains (FLURISK). EFSA Support Publ. 11:EN–571. https://doi.org/10.2903/sp.efsa.2014.EN-571. DOI: 10.2903/sp.efsa.2014.EN-571.
40. Alkie TN, Cox S, Embury-Hyatt C, Stevens B, Pople N, Pybus MJ, et al. 2023; Characterization of neurotropic HPAI H5N1 viruses with novel genome constellations and mammalian adaptive mutations in free-living mesocarnivores in Canada. Emerg Microbes Infect. 12:2186608. DOI: 10.1080/22221751.2023.2186608. PMID: 36880345. PMCID: PMC10026807.
41. Centers for Disease Control and Prevention. 2024. Results of influenza risk assessment tool. Available from: https://www.cdc.gov/pandemic-flu/php/monitoring/irat-virus-summaries.html?CDC_AAref_Val=https://www.cdc.gov/flu/pandemic-resources/monitoring/irat-virus-summaries.htm. updated 2024 Aug 9; cited 2024 Aug 1.
42. Eisfeld AJ, Biswas A, Guan L, Gu C, Maemura T, Trifkovic S, et al. 2024; Pathogenicity and transmissibility of bovine H5N1 influenza virus. Nature. 633:426–32. https://doi.org/10.1038/s41586-024-07766-6. DOI: 10.1038/s41586-024-07766-6. PMID: 38977017. PMCID: PMC11390473.
43. Centers for Disease Control and Prevention (CDC). 2024. CDC reports A(H5N1) ferret study results. Available from: https://www.cdc.gov/pandemic-flu/php/monitoring/irat-virus-summaries.html?CDC_AAref_Val=https://www.cdc.gov/flu/pandemic-resources/monitoring/irat-virus-summaries.htm. updated 2024 Jun 7; cited 2024 Aug 1.
44. Khurana S, King LR, Manischewitz J, Posadas O, Mishra AK, Liu D, et al. 2024; Licensed H5N1 vaccines generate cross-neutralizing antibodies against highly pathogenic H5N1 clade 2. Nat Med. 30:2771–6. https://doi.org/10.1038/s41591-024-03189-y. DOI: 10.1038/s41591-024-03189-y. PMID: 39013430.
45. Lucey DR. 2024. U.S. orders 4.8 million doses of a cell-based, adjuvanted H5-vaccine for avian flu preparedness. Available from: https://www.idsociety.org/science-speaks-blog/2024/u.s.-orders-4.8-million-doses-of-a-cell-based-adjuvanted-h5-vaccine-for-avian-flu-preparedness#/+/0/publishedDate_na_dt/desc/. updated 2024 Jun 5; cited 2024 Aug 1.
46. European Commission. 2024. Commission secures access for Member States to 665,000 doses of zoonotic influenza vaccines to prevent avian flu. Available from: https://ec.europa.eu/commission/presscorner/detail/en/ip_24_3168. updated 2024 Jun 11; cited 2024 Aug 1.
47. U.S. Department of Health & Human Services (HHS). 2024. HHS provides $176 million to develop pandemic influenza mRNA-based vaccine. Available from: https://www.hhs.gov/about/news/2024/07/02/hhs-provides-176-million-develop-pandemic-influenza-mrna-based-vaccine.html. updated 2024 Jul 2; cited 2024 Aug 1.
48. Song JY, Choi MJ, Noh JY, Choi WS, Cheong HJ, Wie SH, et al. 2017; Randomized, double-blind, multi-center, phase III clinical trial to evaluate the immunogenicity and safety of MG1109 (egg-based pre-pandemic influenza A/H5N1 vaccine) in healthy adults. Hum Vaccin Immunother. 13:1190–7. https://doi.org/10.1080/21645515.2016.1263410. DOI: 10.1080/21645515.2016.1263410. PMID: 27996363. PMCID: PMC5443378.
49. Szablewski CM, Iwamoto C, Olsen SJ, Greene CM, Duca LM, Davis CT, et al. 2023; Reported global avian influenza detections among humans and animals during 2013-2022: comprehensive review and analysis of available surveillance data. JMIR Public Health Surveill. 9:e46383. https://doi.org/10.2196/46383. DOI: 10.2196/46383. PMID: 37651182. PMCID: PMC10502594.
Full Text Links
  • KJHAICP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr