1. Dehlin M, Jacobsson L, Roddy E. 2020; Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 16:380–90. DOI:
10.1038/s41584-020-0441-1. PMID:
32541923.
2. Neogi T, Jansen TL, Dalbeth N, Fransen J, Schumacher HR, Berendsen D, et al. 2015; 2015 Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis. 74:1789–98. DOI:
10.1136/annrheumdis-2015-208237. PMID:
26359487. PMCID:
PMC4602275.
3. Campion EW, Glynn RJ, DeLabry LO. 1987; Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am J Med. 82:421–6. DOI:
10.1016/0002-9343(87)90441-4. PMID:
3826098.
5. Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. 2004; Purine-rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med. 350:1093–103. DOI:
10.1056/NEJMoa035700. PMID:
15014182.
7. Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. 2004; Alcohol intake and risk of incident gout in men: a prospective study. Lancet. 363:1277–81. DOI:
10.1016/S0140-6736(04)16000-5. PMID:
15094272.
9. Major TJ, Topless RK, Dalbeth N, Merriman TR. 2018; Evaluation of the diet wide contribution to serum urate levels: meta-analysis of population based cohorts. BMJ. 363:k3951. DOI:
10.1136/bmj.k3951. PMID:
30305269. PMCID:
PMC6174725.
11. Topless RKG, Major TJ, Florez JC, Hirschhorn JN, Cadzow M, Dalbeth N, et al. 2021; The comparative effect of exposure to various risk factors on the risk of hyperuricaemia: diet has a weak causal effect. Arthritis Res Ther. 23:75. DOI:
10.1186/s13075-021-02444-8. PMID:
33663556. PMCID:
PMC7931603.
12. Lin K, McCormick N, Yokose C, Joshi AD, Lu N, Curhan GC, et al. 2023; Interactions between genetic risk and diet influencing risk of incident female gout: discovery and replication analysis of four prospective cohorts. Arthritis Rheumatol. 75:1028–38. DOI:
10.1002/art.42419. PMID:
36512683. PMCID:
PMC10238565.
14. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. 2002; Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 417:447–52. DOI:
10.1038/nature742. PMID:
12024214.
15. Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T, et al. 2012; Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 3:764. DOI:
10.1038/ncomms1756. PMID:
22473008. PMCID:
PMC3337984.
16. Tin A, Marten J, Halperin Kuhns VL, Li Y, Wuttke M, Kirsten H, et al. 2019; Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet. 51:1459–74. DOI:
10.1038/s41588-019-0504-x. PMID:
31578528. PMCID:
PMC6858555.
17. Lyngdoh T, Vuistiner P, Marques-Vidal P, Rousson V, Waeber G, Vollenweider P, et al. 2012; Serum uric acid and adiposity: deciphering causality using a bidirectional Mendelian randomization approach. PLoS One. 7:e39321. DOI:
10.1371/journal.pone.0039321. PMID:
22723994. PMCID:
PMC3378571.
18. Zhu Y, Pandya BJ, Choi HK. 2012; Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007-2008. Am J Med. 125:679–87.e1. DOI:
10.1016/j.amjmed.2011.09.033. PMID:
22626509.
19. Choi HK, McCormick N, Lu N, Rai SK, Yokose C, Zhang Y. 2020; Population impact attributable to modifiable risk factors for hyperuricemia. Arthritis Rheumatol. 72:157–65. DOI:
10.1002/art.41067. PMID:
31486212. PMCID:
PMC6935419.
20. Bruderer S, Bodmer M, Jick SS, Meier CR. 2014; Use of diuretics and risk of incident gout: a population-based case-control study. Arthritis Rheumatol. 66:185–96. DOI:
10.1002/art.38203. PMID:
24449584.
21. Marcén R, Gallego N, Orofino L, Sabater J, Pascual J, Teruel JL, et al. 1992; Influence of cyclosporin A (CyA) on renal handling of urate. Transpl Int. 5 Suppl 1:S81–3. DOI:
10.1111/tri.1992.5.s1.81.
23. Xing SC, Meng DM, Chen Y, Jiang G, Liu XS, Li N, et al. 2015; Study on the diversity of Bacteroides and Clostridium in patients with primary gout. Cell Biochem Biophys. 71:707–15. DOI:
10.1007/s12013-014-0253-5. PMID:
25344643.
24. Méndez-Salazar EO, Vázquez-Mellado J, Casimiro-Soriguer CS, Dopazo J, Çubuk C, Zamudio-Cuevas Y, et al. 2021; Taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism. Mol Med. 27:50. DOI:
10.1186/s10020-021-00311-5. PMID:
34030623. PMCID:
PMC8142508.
26. Dalbeth N, Phipps-Green A, Frampton C, Neogi T, Taylor WJ, Merriman TR. 2018; Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann Rheum Dis. 77:1048–52. DOI:
10.1136/annrheumdis-2017-212288. PMID:
29463518.
27. Dalbeth N, House ME, Aati O, Tan P, Franklin C, Horne A, et al. 2015; Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis. 74:908–11. DOI:
10.1136/annrheumdis-2014-206397. PMID:
25637002.
28. Loeb JN. 1972; The influence of temperature on the solubility of monosodium urate. Arthritis Rheum. 15:189–92. DOI:
10.1002/art.1780150209. PMID:
5027604.
29. Kippen I, Klinenberg JR, Weinberger A, Wilcox WR. 1974; Factors affecting urate solubility in vitro. Ann Rheum Dis. 33:313–7. DOI:
10.1136/ard.33.4.313. PMID:
4413418. PMCID:
PMC1006264.
30. Chhana A, Lee G, Dalbeth N. 2015; Factors influencing the crystallization of monosodium urate: a systematic literature review. BMC Musculoskelet Disord. 16:296. DOI:
10.1186/s12891-015-0762-4. PMID:
26467213. PMCID:
PMC4606994.
32. Muehleman C, Li J, Aigner T, Rappoport L, Mattson E, Hirschmugl C, et al. 2008; Association between crystals and cartilage degeneration in the ankle. J Rheumatol. 35:1108–17.
34. Taylor WJ, Fransen J, Jansen TL, Dalbeth N, Schumacher HR, Brown M, et al. 2015; Study for updated gout classification criteria: identification of features to classify gout. Arthritis Care Res (Hoboken). 67:1304–15. DOI:
10.1002/acr.22585. PMID:
25777045. PMCID:
PMC4573373.
35. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. 2006; Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 440:237–41. DOI:
10.1038/nature04516. PMID:
16407889.
36. Abbas AK, Lichtman AH, Pillai S. 2023. Basic immunology: functions and disorders of the immune system. 7th ed. Elsevier;Philadelphia: p. 23–52.
38. Martinon F, Burns K, Tschopp J. 2002; The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 10:417–26. DOI:
10.1016/S1097-2765(02)00599-3. PMID:
12191486.
39. Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, et al. 2016; NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 17:250–8. DOI:
10.1038/ni.3333. PMID:
26642356. PMCID:
PMC4862588.
41. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. 2015; Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–5. DOI:
10.1038/nature15514. PMID:
26375003.
42. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. 2009; Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 183:787–91. DOI:
10.4049/jimmunol.0901363. PMID:
19570822. PMCID:
PMC2824855.
43. Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH, et al. 2009; Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood. 113:2324–35. DOI:
10.1182/blood-2008-03-146720. PMID:
19104081. PMCID:
PMC2652374.
44. Franchi L, Eigenbrod T, Núñez G. 2009; Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol. 183:792–6. DOI:
10.4049/jimmunol.0900173. PMID:
19542372. PMCID:
PMC2754237.
46. Liu-Bryan R, Scott P, Sydlaske A, Rose DM, Terkeltaub R. 2005; Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum. 52:2936–46. DOI:
10.1002/art.21238. PMID:
16142712.
47. Giamarellos-Bourboulis EJ, Mouktaroudi M, Bodar E, van der Ven J, Kullberg BJ, Netea MG, et al. 2009; Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1 beta by mononuclear cells through a caspase 1-mediated process. Ann Rheum Dis. 68:273–8. DOI:
10.1136/ard.2007.082222. PMID:
18390571.
48. Joosten LA, Netea MG, Mylona E, Koenders MI, Malireddi RK, Oosting M, et al. 2010; Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum. 62:3237–48. DOI:
10.1002/art.27667. PMID:
20662061. PMCID:
PMC2970687.
49. Holzinger D, Nippe N, Vogl T, Marketon K, Mysore V, Weinhage T, et al. 2014; Myeloid-related proteins 8 and 14 contribute to monosodium urate monohydrate crystal-induced inflammation in gout. Arthritis Rheumatol. 66:1327–39. DOI:
10.1002/art.38369. PMID:
24470119.
50. Chung YH, Kim DH, Lee WW. 2016; Monosodium urate crystal-induced pro-interleukin-1β production is post-transcriptionally regulated via the p38 signaling pathway in human monocytes. Sci Rep. 6:34533. DOI:
10.1038/srep34533. PMID:
27694988. PMCID:
PMC5046103.
51. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, et al. 2008; Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 9:847–56. DOI:
10.1038/ni.1631. PMID:
18604214. PMCID:
PMC2834784.
52. So AK, Martinon F. 2017; Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol. 13:639–47. DOI:
10.1038/nrrheum.2017.155. PMID:
28959043.
54. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR, et al. 1997; Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J Immunol. 159:1451–8. DOI:
10.4049/jimmunol.159.3.1451. PMID:
9233643.
55. Di A, Xiong S, Ye Z, Malireddi RKS, Kometani S, Zhong M, et al. 2018; The TWIK2 potassium efflux channel in macrophages mediates NLRP3 inflammasome-induced inflammation. Immunity. 49:56–65.e4. DOI:
10.1016/j.immuni.2018.04.032. PMID:
29958799. PMCID:
PMC6051907.
56. Song D, Zhou X, Yu Q, Li R, Dai Q, Zeng M. 2024; ML335 inhibits TWIK2 channel-mediated potassium efflux and attenuates mitochondrial damage in MSU crystal-induced inflammation. J Transl Med. 22:785. DOI:
10.1186/s12967-024-05303-7. PMID:
39175013. PMCID:
PMC11342740.
58. Popov D, Jain L, Alhilali M, Dalbeth N, Poulsen RC. 2023; Monosodium urate crystals alter the circadian clock in macrophages leading to loss of NLRP3 inflammasome repression: Implications for timing of the gout flare. FASEB J. 37:e22940. DOI:
10.1096/fj.202202035R. PMID:
37243314.
62. Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, et al. 2014; Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 20:511–7. DOI:
10.1038/nm.3547. PMID:
24784231.
63. Netea MG, van de Veerdonk FL, van der Meer JW, Dinarello CA, Joosten LA. 2015; Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol. 33:49–77. DOI:
10.1146/annurev-immunol-032414-112306. PMID:
25493334.
65. Nakayama DA, Barthelemy C, Carrera G, Lightfoot RW Jr, Wortmann RL. 1984; Tophaceous gout: a clinical and radiographic assessment. Arthritis Rheum. 27:468–71. DOI:
10.1002/art.1780270417. PMID:
6712761.
66. Forbess LJ, Fields TR. 2012; The broad spectrum of urate crystal deposition: unusual presentations of gouty tophi. Semin Arthritis Rheum. 42:146–54. DOI:
10.1016/j.semarthrit.2012.03.007. PMID:
22522111.
67. Dalbeth N, House ME, Horne A, Taylor WJ. 2013; Reduced creatinine clearance is associated with early development of subcutaneous tophi in people with gout. BMC Musculoskelet Disord. 14:363. DOI:
10.1186/1471-2474-14-363. PMID:
24359261. PMCID:
PMC3878111.
69. Dalbeth N, Pool B, Gamble GD, Smith T, Callon KE, McQueen FM, et al. 2010; Cellular characterization of the gouty tophus: a quantitative analysis. Arthritis Rheum. 62:1549–56. DOI:
10.1002/art.27356. PMID:
20131281.
70. Dalbeth N, Clark B, Gregory K, Gamble G, Sheehan T, Doyle A, et al. 2009; Mechanisms of bone erosion in gout: a quantitative analysis using plain radiography and computed tomography. Ann Rheum Dis. 68:1290–5. DOI:
10.1136/ard.2008.094201. PMID:
18708415.
71. McQueen FM, Doyle A, Reeves Q, Gao A, Tsai A, Gamble GD, et al. 2014; Bone erosions in patients with chronic gouty arthropathy are associated with tophi but not bone oedema or synovitis: new insights from a 3 T MRI study. Rheumatology (Oxford). 53:95–103. DOI:
10.1093/rheumatology/ket329. PMID:
24080252.
72. Dalbeth N, Smith T, Nicolson B, Clark B, Callon K, Naot D, et al. 2008; Enhanced osteoclastogenesis in patients with tophaceous gout: urate crystals promote osteoclast development through interactions with stromal cells. Arthritis Rheum. 58:1854–65. DOI:
10.1002/art.23488. PMID:
18512794.
74. Schweyer S, Hemmerlein B, Radzun HJ, Fayyazi A. 2000; Continuous recruitment, co-expression of tumour necrosis factor-alpha and matrix metalloproteinases, and apoptosis of macrophages in gout tophi. Virchows Arch. 437:534–9. DOI:
10.1007/s004280000282. PMID:
11147175.
75. Lee SJ, Nam KI, Jin HM, Cho YN, Lee SE, Kim TJ, et al. 2011; Bone destruction by receptor activator of nuclear factor κB ligand-expressing T cells in chronic gouty arthritis. Arthritis Res Ther. 13:R164. DOI:
10.1186/ar3483. PMID:
21992185. PMCID:
PMC3308097.
76. Chhana A, Callon KE, Pool B, Naot D, Watson M, Gamble GD, et al. 2011; Monosodium urate monohydrate crystals inhibit osteoblast viability and function: implications for development of bone erosion in gout. Ann Rheum Dis. 70:1684–91. DOI:
10.1136/ard.2010.144774. PMID:
21622970.
77. Naot D, Pool B, Chhana A, Gao R, Munro JT, Cornish J, et al. 2022; Factors secreted by monosodium urate crystal-stimulated macrophages promote a proinflammatory state in osteoblasts: a potential indirect mechanism of bone erosion in gout. Arthritis Res Ther. 24:212. DOI:
10.1186/s13075-022-02900-z. PMID:
36064735. PMCID:
PMC9442999.
78. Chhana A, Pool B, Callon KE, Tay ML, Musson D, Naot D, et al. 2018; Monosodium urate crystals reduce osteocyte viability and indirectly promote a shift in osteocyte function towards a proinflammatory and proresorptive state. Arthritis Res Ther. 20:208. DOI:
10.1186/s13075-018-1704-y. PMID:
30201038. PMCID:
PMC6131786.
79. Chhana A, Callon KE, Pool B, Naot D, Gamble GD, Dray M, et al. 2013; The effects of monosodium urate monohydrate crystals on chondrocyte viability and function: implications for development of cartilage damage in gout. J Rheumatol. 40:2067–74. DOI:
10.3899/jrheum.130708. PMID:
24187106.