Blood Res.  2024;59:9. 10.1007/s44313-024-00007-9.

Impact of CYP1A1 variants on the risk of acute lymphoblastic leukemia: evidence from an updated meta‑analysis

Affiliations
  • 1Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
  • 2Department of Hematology, Hedi Chaker Hospital, Sfax, Tunisia
  • 3Department of Medical Genetics, Hedi Chaker Hospital, Sfax, Tunisia

Abstract


Objective
Our study aimed to investigate the association between cytochrome P450 1A1 (CYP1A1) polymorphisms (T3801C and A2455G) and acute lymphoblastic leukemia (ALL) risk, considering genetic models and ethnicity. Materials and methods PubMed, Embase, Web of Knowledge, Scopus, and the Cochrane electronic databases were searched using combinations of keywords related to CYP1A1 polymorphisms and the risk of ALL. Studies retrieved from the database searches underwent screening based on strict inclusion and exclusion criteria.
Results
In total, 2822 cases and 4252 controls, as well as 1636 cases and 2674 controls of the C3801T and A2455G variants of CYP1A1, respectively, were included in this meta-analysis. The T3801C polymorphism of CYP1A1 significantly increases the risk of ALL, particularly those observed in Asian and Hispanic populations, independent of age. Similarly, the A2455G polymorphism of CYP1A1 plays a significant role in the susceptibility to ALL in all genetic models, except the heterozygous form. This association was observed mainly in mixed populations and in both children and adults (except in the heterozygous model).
Conclusion
Our comprehensive analysis indicates that the T3801 and A2455G polymorphisms of CYP1A1 may increase the risk of ALL depending on ethnicity. Therefore, both variants should be considered promising biomarkers for ALL risk. Further large-scale investigations are necessary to assess other factors, such as gene-gene or gene-environment interactions.

Keyword

Cytochrome; Acute lymphoblastic leukemia; Risk; Meta-analysis

Figure

  • Fig. 1 Flow diagram for article identification and exclusion

  • Fig. 2 Forest plot of C3801T Polymorphism and ALL Risk under Different Models (A-E)

  • Fig. 3 Forest plot of A2455G Polymorphism and ALL Risk under Different Models (A-E)


Reference

1. Terwilliger T, Abdul-Hay M. 2017; Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 7:e577. DOI: 10.1038/bcj.2017.53. PMID: 28665419. PMCID: PMC5520400.
Article
2. Chokkalingam AP, Buffler PA. 2008; Genetic susceptibility to childhood leukaemia. Radiat Prot Dosim. 132:119–29. DOI: 10.1093/rpd/ncn255. PMID: 18922824. PMCID: PMC2879095.
Article
3. Severson RK, Ross JA. 1999; The causes of acute leukemia. Curr Opin Oncol. 11:20–4. DOI: 10.1097/00001622-199901000-00005. PMID: 9914873.
Article
4. Rendic S, Guengerich FP. 2012; Contributions of human enzymes in carcinogen metabolism. Chem Res Toxicol. 25:1316–83. DOI: 10.1021/tx300132k. PMID: 22531028. PMCID: PMC3398241.
Article
5. Samuel W, Lovell J, Christine C, Kathi H, editors. 2002. Cancer and the Environment: Gene-Environment Interactions. National Academies Press;Washington, D.C.: https://doi.org/10.17226/10464. DOI: 10.17226/10464.
Article
6. Guengerich FP, Shimada T. 1991; Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol. 4:391–407. DOI: 10.1021/tx00022a001. PMID: 1912325.
Article
7. Whyatt RM, Bell DA, Jedrychowski W, et al. 1998; Polycyclic aromatic hydrocarbon-DNA adducts in human placenta and modulation by CYP1A1 induction and genotype. Carcinogenesis. 19:1389–92. DOI: 10.1093/carcin/19.8.1389. PMID: 9744534.
Article
8. Pegram RA, Diliberto JJ, Moore TC, Gao P, Birnbaum LS. 1995; 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) distribution and cytochrome P4501A induction in young adult and senescent male mice. Toxicol Lett. 76:119–26. DOI: 10.1016/0378-4274(94)03212-P. PMID: 7725343.
Article
9. Crofts F, Cosma GN, Currie D, Taioli E, Toniolo P, Garte SJ. 1993; A novel CYP1A1 gene polymorphism in African-Americans. Carcinogenesis. 14:1729–31. DOI: 10.1093/carcin/14.9.1729. PMID: 8104732.
Article
10. Kawajiri K, Nakachi K, Imai K, Yoshii A, Shinoda N, Watanabe J. 1990; Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett. 263:131–3. DOI: 10.1016/0014-5793(90)80721-T. PMID: 1691986.
11. Nida S, Javid B, Akbar M, Idrees S, Adil W, Ahmad GB. 2017; Gene variants of CYP1A1 and CYP2D6 and the risk of childhood acute lymphoblastic leukaemia; outcome of a case control study from Kashmir. India Mol Biol Res Commun. 6:77–84.
12. Lu J, Zhao Q, Zhai YJ, et al. 2015; Genetic polymorphisms of CYP1A1 and risk of leukemia: a meta-analysis. Onco Targets Ther. 8:2883–902. DOI: 10.2147/OTT.S92259. PMID: 26491362. PMCID: PMC4608596.
Article
13. Bolufer P, Collado M, Barragán E, et al. 2007; The potential effect of gender in combination with common genetic polymorphisms of drug-metabolizing enzymes on the risk of developing acute leukemia. Haematologica. 92:308–14. DOI: 10.3324/haematol.10752. PMID: 17339179.
Article
14. Yamaguti GG, Lourenço GJ, Silveira VS, Tone LG, Lopes LF, Lima CSP. 2010; Increased risk for acute lymphoblastic leukemia in children with cytochrome P450A1(CYP1A1)- and NAD(P)H:quinone oxidoreductase 1 (NQO1)-inherited gene variants. Acta Haematol. 124:182–4. DOI: 10.1159/000320275. PMID: 20962519.
Article
15. Martorell-Marugan J, Toro-Dominguez D, Alarcon-Riquelme ME, Carmona-Saez P. 2017; MetaGenyo: a web tool for meta-analysis of genetic association studies. BMC Bioinformatics. 18:563. DOI: 10.1186/s12859-017-1990-4. PMID: 29246109. PMCID: PMC5732412. PMID: cec4d14eea7b423cb788df0714577848.
Article
16. Egger M, Davey Smith GD, Schneider M, Minder C. 1997; Bias in meta-analysis detected by a simple, graphical test. BMJ. 315:629–34. DOI: 10.1136/bmj.315.7109.629. PMID: 9310563. PMCID: PMC2127453.
Article
17. Gurion R, Gafter-Gvili A, Vidal L, et al. 2013; Has the time for first-line treatment with second generation tyrosine kinase inhibitors in patients with chronic myelogenous leukemia already come? Systematic review and meta-analysis. Haematologica. 98:95–102. DOI: 10.3324/haematol.2012.063172. PMID: 22875617. PMCID: PMC3533665.
Article
18. Krajinovic M, Labuda D, Richer C, Karimi S, Sinnett D. 1999; Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood. 93:1496–501. DOI: 10.1182/blood.V93.5.1496. PMID: 10029576.
Article
19. Gao J, Huang Y, Liang J, Fang X. 2003; Relationship between genetic polymorphisms of CYP1A1 and ALL. Chin J Birth Health Hered. 11:21–4.
20. Balta G, Yuksek N, Ozyurek E, et al. 2003; Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Am J Hematol. 73:154–60. DOI: 10.1002/ajh.10339. PMID: 12827651.
Article
21. Joseph T, Kusumakumary P, Chacko P, Abraham A, Radhakrishna PM. 2004; Genetic polymorphism ofCYP1A1, CYP2D6, GSTM1 andGSTT1 and susceptibility to acute lymphoblastic leukaemia in Indian children. Pediatr Blood Cancer. 43:560–7. DOI: 10.1002/pbc.20074. PMID: 15382273.
22. Canalle R, Burim RV, Tone LG, Takahashi CS. 2004; Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Environ Mol Mutagen. 43:100–9. DOI: 10.1002/em.20003. PMID: 14991750.
Article
23. Gallegos-Arreola MP, González-García JR, Figuera LE, Puebla-Pérez AM, Delgado-Lamas JL, Zúñiga-González GM. 2008; Distribution of CYP1A1*2A polymorphism in adult patients with acute lymphoblastic leukemia in a Mexican population. Blood Cells Mol Dis. 41:91–4. DOI: 10.1016/j.bcmd.2007.12.001. PMID: 18203634.
Article
24. Selvin S. 2004; Cytochrome P450 1A1 polymorphism and childhood leukemia: an analysis of matched pairs case-control genotype data. Cancer Epidemiol Biomarkers Prev. 13:1371–4. DOI: 10.1158/1055-9965.1371.13.8. PMID: 15298960.
25. Clavel J, Bellec S, Rebouissou S, et al. 2005; Childhood leukaemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy. Eur J Cancer Prev. 14:531–40. DOI: 10.1097/00008469-200512000-00007. PMID: 16284498.
Article
26. Liu QX, Chen HC, Liu XF, Cao YF, Zhang J, Liu J. 2005; Study on the relationship between polymorphisms of Cyp1A1, GSTM1, GSTT1 genes and the susceptibility to acute leukemia in the general population of Hunan Province. Zhonghua Liu Xing Bing Xue Za Zhi. 26:975–9.
27. Pakakasama S, Mukda E, Sasanakul W, et al. 2005; Polymorphisms of drugmetabolizing enzymes and risk of childhood acute lymphoblastic leukemia. Am J Hematol. 79:202–5. DOI: 10.1002/ajh.20404. PMID: 15981231.
Article
28. Aydin-Sayitoglu M, Hatirnaz O, Erensoy N, Ozbek U. 2006; Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. Am J Hematol. 81:162–70. DOI: 10.1002/ajh.20434. PMID: 16493615.
29. Gallegos-Arreola MP, Batista-González CM, Delgado-Lamas JL, et al. 2004; Cytochrome P4501A1 polymorphism is associated with susceptibility to acute lymphoblastic leukemia in adult Mexican patients. Blood Cells Mol Dis. 33:326–9. DOI: 10.1016/j.bcmd.2004.07.002. PMID: 15528152.
Article
30. Chen HC, Hu WX, Liu QX, et al. 2008; Genetic polymorphisms of metabolic enzymes CYP1A1, CYP2D6, GSTM1 and GSTT1 and leukemia susceptibility. Eur J Cancer Prev. 17:251–8. DOI: 10.1097/CEJ.0b013e3282b72093. PMID: 18414197.
Article
31. Lee KM, Ward MH, Han S, et al. 2009; Paternal smoking, genetic polymorphisms in CYP1A1 and childhood leukemia risk. Leuk Res. 33:250–8. DOI: 10.1016/j.leukres.2008.06.031. PMID: 18691756. PMCID: PMC2787091.
Article
32. Swinney RM, Beuten J, Collier AB 3rd, et al. 2011; Polymorphisms in CYP1A1 and ethnic-specific susceptibility to acute lymphoblastic leukemia in children. Cancer Epidemiol Biomarkers Prev. 20:1537–42. DOI: 10.1158/1055-9965.EPI-10-1265. PMID: 21586621.
33. Sinnett D, Krajinovic M, Labuda D. 2000; Genetic susceptibility to childhood acute lymphoblastic leukemia. Leuk Lymphoma. 38:447–62. DOI: 10.3109/10428190009059264. PMID: 10953966.
Article
34. Razmkhah F, Pazhakh V, Zaker F, Atashrazm F, Sheikhi M. 2011; Frequency of CYP1A1*2C polymorphism in patients with leukemia in the Iranian population. Lab Med. 42:220–3. DOI: 10.1309/LM337JWOSVNEHPUI.
Article
35. Bonaventure A, Goujon-Bellec S, Rudant J, et al. 2012; Maternal smoking during pregnancy, genetic polymorphisms of metabolic enzymes, and childhood acute leukemia: the ESCALE Study (SFCE). Cancer Causes Control. 23:329–45. DOI: 10.1007/s10552-011-9882-9. PMID: 22200898.
Article
36. Agha A, Shabaan H, Abdel-Gawad E, El-Ghannam D. 2014; Polymorphism of CYP1A1 gene and susceptibility to childhood acute lymphoblastic leukemia in Egypt. Leuk Lymphoma. 55:618–23. DOI: 10.3109/10428194.2013.809527. PMID: 23725389.
37. Ouerhani S, Cherif N, Bahri I, Safra I, Menif S, Abbes S. 2013; Genetic polymorphisms of NQO1, CYP1A1 and TPMT and susceptibility to acute lymphoblastic leukemia in a Tunisian population. Mol Biol Rep. 40:1307–14. DOI: 10.1007/s11033-012-2174-y. PMID: 23065291.
Article
38. Han F, Tan Y, Cui W, Dong L, Li W. 2013; Novel insights into etiologies of leukemia: a HuGE review and meta-analysis of CYP1A1 polymorphisms and leukemia risk. Am J Epidemiol. 178:493–507. DOI: 10.1093/aje/kwt016. PMID: 23707957.
Article
39. Hamachi T, Tajima O, Uezono K, et al. 2013; CYP1A1, GSTM1, GSTT1 and NQO1 polymorphisms and colorectal adenomas in Japanese men. World J Gastroenterol. 19:4023–30. DOI: 10.3748/wjg.v19.i25.4023. PMID: 23840148. PMCID: PMC3703190.
Article
40. Yao L, Yu X, Yu L. 2010; Lack of significant association between CYP1A1 T3801C polymorphism and breast cancer risk: a meta-analysis involving 25,087 subjects. Breast Cancer Res Treat. 122:503–7. DOI: 10.1007/s10549-009-0717-2. PMID: 20052535.
Article
41. He XF, Wei W, Liu ZZ, et al. 2014; Association between the CYP1A1 T3801C polymorphism and risk of cancer: evidence from 268 case-control studies. Gene. 534:324–44. DOI: 10.1016/j.gene.2013.10.025. PMID: 24498651.
Article
Full Text Links
  • BR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2025 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr