1. Goizueta-San Martin G, Ruiz-Rodriguez G, Gutierrez-Gutierrez G, Gutierrez-Rivas E, Millan-Santos I. Latency values of 248 H reflexes in 124 normal subjects. Rev Neurol. 2010; 51:589–91.
2. Ishikawa K, Ott K, Porter RW, Stuart D. Low frequency depression of the H wave in normal and spinal man. Exp Neurol. 1966; 15:140–56.
Article
3. Piper H. The action currents of human muscles. The methodology of investigation using the string galvanometer and the principles of current curve analysis. Types of differences in voluntary contraction. Ztg Biol Tech Method. 1912; 3:3–52.
4. Hoffman P. On the relationships of tendon reflexes to voluntary movement and tone. Z Biol. 1918; 68:351–70.
6. Burke D, Gandevia SC, McKeon B. Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex. J Neurophysiol. 1984; 52:435–48.
Article
7. Knikou M. The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods. 2008; 171:1–12.
Article
8. Jabre JF. Surface recording of the H-reflex of the flexor carpi radialis. Muscle Nerve. 1981; 4:435–8.
Article
9. Doko-Guina F, Jusic A. H-reflex, F-wave, transitional and missed response frequency distribution in limb muscles. Acta Med Croatica. 1997; 51:15–21.
10. Libonati L, Barone TF, Ceccanti M, Cambieri C, Tartaglia G, Onesti E, et al. Heteronymous H reflex in temporal muscle as sign of hyperexcitability in ALS patients. Clin Neurophysiol. 2019; 130:1455–9.
Article
11. Teigland OH, Pugdahl K, Fuglsang-Frederiksen A, Tankisi H. Utility of the H-reflex in diagnosing polyneuropathy. Muscle Nerve. 2019; 60:424–8.
Article
12. Millan-Guerrero R, Trujillo-Hernandez B, Isais-Millan S, Prieto-Diaz-Chavez E, Vasquez C, Caballero-Hoyos JR, et al. Hreflex and clinical examination in the diagnosis of diabetic polyneuropathy. J Int Med Res. 2012; 40:694–700.
Article
13. Falco FJ, Hennessey WJ, Goldberg G, Braddom RL. H reflex latency in the healthy elderly. Muscle Nerve. 1994; 17:161–7.
Article
14. Bosnjak R, Makovec M. Neurophysiological monitoring of S1 root function during microsurgical posterior discectomy using H-reflex and spinal nerve root potentials. Spine (Phila Pa 1976). 2010; 35:423–9.
Article
15. Alrowayeh HN, Sabbahi MA. H-reflex amplitude asymmetry is an earlier sign of nerve root involvement than latency in patients with S1 radiculopathy. BMC Res Notes. 2011; 4:102.
Article
16. Emad MR, Gheisi AR. A complementary approach for evaluating S1-root in diabetic neuropathic patients. Electromyogr Clin Neurophysiol. 2010; 50:61–4.
17. Zhu DQ, Zhu Y, Qiao K, Zheng CJ, Bradley S, Weber R, et al. Proximally evoked soleus H-reflex to S1 nerve root stimulation in sensory neuronopathies (ganglionopathies). Muscle Nerve. 2013; 48:814–6.
Article
18. Zheng C, Zhu Y, Lu F, Xia X, Jin X, Weber R, et al. Diagnostic advantage of S1 foramen-evoked H-reflex for S1 radiculopathy in patients with diabetes mellitus. Int J Neurosci. 2013; 123:770–5.
Article
19. Gordon PH, Wilbourn AJ. Early electrodiagnostic findings in Guillain-Barre syndrome. Arch Neurol. 2001; 58:913–7.
Article
20. Rasera A, Romito S, Segatti A, Concon E, Alessandrini L, Basaldella F, et al. Very early and early neurophysiological abnormalities in Guillain-Barré syndrome: a 4-year retrospective study. Eur J Neurol. 2021; 28:3768–73.
Article
21. Wali A, Kanwar D, Khan SA, Khan S. Early electrophysiological findings in acute inflammatory demyelinating polyradiculoneuropathy variant of Guillain-Barre syndrome in the Pakistani population: a comparison with global data. J Peripher Nerv Syst. 2017; 22:451–4.
22. Kuwabara S, Nakata M, Sung JY, Mori M, Kato N, Hattori T, et al. Hyperreflexia in axonal Guillain-Barré syndrome subsequent to Campylobacter jejuni enteritis. J Neurol Sci. 2002; 199:89–92.
Article
23. Duday H, Dapres G, Georgesco M. Motor conduction velocity and the Hoffman reflex in diabetes. Rev Electroencephalogr Neurophysiol Clin. 1977; 7:180–6.
24. Tonra JR, Cliffer KD, Carson SR, Lindsay RM, Bodine SC, DiStefano PS. Reduced Ia-afferent-mediated Hoffman reflex in streptozotocin-induced diabetic rats. Exp Neurol. 2001; 172:220–7.
Article
25. Gaidina GA, Gol’ber LM, Lazareva SP, Mazovetskii AG. Function of the neuromotor apparatus in diabetes mellitus. Probl Endokrinol (Mosk). 1978; 24:9–14.
26. Hallett M, Berardelli A, Delwaide P, Freund HJ, Kimura J, Lucking C, et al. Central EMG and tests of motor control: report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994; 90:404–32.
Article
27. Musaev AV, Guseinova SG, Imamverdieva SS. The use of pulsed electromagnetic fields with complex modulation in the treatment of patients with diabetic polyneuropathy. Neurosci Behav Physiol. 2003; 33:745–52.
28. Mazzini L, Balzarini C, Gareri F, Brigatti M. H-reflex changes in the course of amyotrophic lateral sclerosis. Electroencephalogr Clin Neurophysiol. 1997; 104:411–7.
Article
29. Trontelj JV. H-reflex of single motoneurons in man. Nature. 1968; 220:1043–4.
30. Milanov IG. A comparison of methods to assess the excitability of lower motoneurones. Can J Neurol Sci. 1992; 19:64–8.
Article
31. Taborikova H, Sax DS. Motoneurone pool and the H-reflex. J Neurol Neurosurg Psychiatry. 1968; 31:354–61.
Article
32. Andersen P, Eccles J. Inhibitory phasing of neuronal discharge. Nature. 1962; 196:645–7.
Article
33. Trompetto C, Marinelli L, Mori L, Canneva S, Colombano F, Traverso E, et al. The effect of age on post-activation depression of the upper limb H-reflex. Eur J Appl Physiol. 2014; 114:359–64.
Article
34. Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med. 2010; 16:302–7.
Article
35. Sperelakis N. Cell physiology source book. 4th ed. . San Diego: Academic Press;2012. Chapter 32, Synaptic transmission; p.563-78.
36. Stampanoni Bassi M, Iezzi E, Gilio L, Centonze D, Buttari F. Synaptic plasticity shapes brain connectivity: implications for network topology. Int J Mol Sci. 2019; 20:6193.
Article
37. Guo D, Hu J. Spinal presynaptic inhibition in pain control. Neuroscience. 2014; 283:95–106.
Article
38. Hashimoto T. GABA receptor chloride ion channel. Nihon Rinsho. 1998; 56:1824–9.
39. Kubota H, Katsurabayashi S, Moorhouse AJ, Murakami N, Koga H, Akaike N. GABAB receptor transduction mechanisms, and cross-talk between protein kinases A and C, in GABAergic terminals synapsing onto neurons of the rat nucleus basalis of Meynert. J Physiol. 2003; 551(Pt 1):263–76.
Article
40. Ueno T, Okabe A, Akaike N, Fukuda A, Nabekura J. Diversity of neuron-specific K+-Cl-cotransporter expression and inhibitory postsynaptic potential depression in rat motoneurons. J Biol Chem. 2002; 277:4945–50.
41. Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev. 2023; 103:1095–135.
Article
42. Come E, Heubl M, Schwartz EJ, Poncer JC, Levi S. Reciprocal regulation of KCC2 trafficking and synaptic activity. Front Cell Neurosci. 2019; 13:48.
43. Viitanen T, Ruusuvuori E, Kaila K, Voipio J. The K+-Cl cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus. J Physiol. 2010; 588(Pt 9):1527–40.
44. Hultborn H, Illert M, Nielsen J, Paul A, Ballegaard M, Wiese H. On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res. 1996; 108:450–62.
Article
45. Barolat-Romana G, Davis R. Neurophysiological mechanisms in abnormal reflex activities in cerebral palsy and spinal spasticity. J Neurol Neurosurg Psychiatry. 1980; 43:333–42.
Article
46. Nielsen J, Petersen N, Ballegaard M, Biering-Sorensen F, Kiehn O. H-reflexes are less depressed following muscle stretch in spastic spinal cord injured patients than in healthy subjects. Exp Brain Res. 1993; 97:173–6.
Article
47. Schindler-Ivens S, Shields RK. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Exp Brain Res. 2000; 133:233–41.
Article
48. Kakinohana O, Hefferan MP, Nakamura S, Kakinohana M, Galik J, Tomori Z, et al. Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study. Neuroscience. 2006; 141:1569–83.
Article
49. Chang YJ, Liu YC, Hsu MJ, Fang CY, Wong AM, DeJong SL, et al. Novel human models for elucidating mechanisms of ratesensitive H-reflex depression. Biomed J. 2020; 43:44–52.
Article
50. Sadlaoud K, Khalki L, Brocard F, Vinay L, Boulenguez P, Bras H. Alteration of glycinergic receptor expression in lumbar spinal motoneurons is involved in the mechanisms underlying spasticity after spinal cord injury. J Chem Neuroanat. 2020; 106:101787.
Article
51. Mahrous A, Birch D, Heckman CJ, Tysseling V. Muscle spasms after spinal cord injury stem from changes in motoneuron excitability and synaptic inhibition, not synaptic excitation. J Neurosci. 2024; 44:e1695232023.
Article
52. Li X, Song X, Fang L, Ding J, Qi L, Wang Q, et al. Body weightsupported treadmill training ameliorates motoneuronal hyperexcitability by increasing GAD-65/67 and KCC2 expression via TrkB signaling in rats with incomplete spinal cord injury. Neurochem Res. 2022; 47:1679–91.
Article
53. Bose PK, Hou J, Parmer R, Reier PJ, Thompson FJ. Altered patterns of reflex excitability, balance, and locomotion following spinal cord injury and locomotor training. Front Physiol. 2012; 3:258.
Article
54. Sabatier MJ, Wedewer W, Barton B, Henderson E, Murphy JT, Ou K. Slope walking causes short-term changes in soleus Hreflex excitability. Physiol Rep. 2015; 3:e12308.
Article
55. Arvanian VL, Liang L, Tesfa A, Fahmy M, Petrosyan HA. Buprenorphine, a partial opioid agonist, prevents modulation of H-reflex induced by pulsed electromagnetic stimulation in spinal cord injured rats. Neurosci Lett. 2022; 777:136583.
Article
56. Mekhael W, Begum S, Samaddar S, Hassan M, Toruno P, Ahmed M, et al. Repeated anodal trans-spinal direct current stimulation results in long-term reduction of spasticity in mice with spinal cord injury. J Physiol. 2019; 597:2201–23.
Article
57. Dixon L, Ibrahim MM, Santora D, Knikou M. Paired associative transspinal and transcortical stimulation produces plasticity in human cortical and spinal neuronal circuits. J Neurophysiol. 2016; 116:904–16.
Article
58. Ertlen C, Seblani M, Bonnet M, Brezun JM, Coyle T, Sabatier F, et al. Efficacy of the immediate adipose-derived stromal vascular fraction autograft on functional sensorimotor recovery after spinal cord contusion in rats. Stem Cell Res Ther. 2024; 15:29.
Article
59. Hefferan MP, Kucharova K, Kinjo K, Kakinohana O, Sekerkova G, Nakamura S, et al. Spinal astrocyte glutamate receptor 1 overexpression after ischemic insult facilitates behavioral signs of spasticity and rigidity. J Neurosci. 2007; 27:11179–91.
Article
60. Chang YX, Zhao Y, Pan S, Qi ZP, Kong WJ, Pan YR, et al. Intramuscular injection of adenoassociated virus encoding human neurotrophic factor 3 and exercise intervention contribute to reduce spasms after spinal cord injury. Neural Plast. 2019; 2019:3017678.
Article
61. Bonnet M, Alluin O, Trimaille T, Gigmes D, Marqueste T, Decherchi P. Delayed injection of a physically cross-linked PNIPAAm-g-PEG hydrogel in rat contused spinal cord improves functional recovery. ACS Omega. 2020; 5:10247–59.
Article
62. Liu H, Skinner RD, Arfaj A, Yates C, Reese NB, Williams K, et al. L-Dopa effect on frequency-dependent depression of the H-reflex in adult rats with complete spinal cord transection. Brain Res Bull. 2010; 83:262–5.
Article
63. Bilchak JN, Yeakle K, Caron G, Malloy D, Cote MP. Enhancing KCC2 activity decreases hyperreflexia and spasticity after chronic spinal cord injury. Exp Neurol. 2021; 338:113605.
Article
64. Benson CA, Olson KL, Patwa S, Reimer ML, Bangalore L, Hill M, et al. Conditional RAC1 knockout in motor neurons restores H-reflex rate-dependent depression after spinal cord injury. Sci Rep. 2021; 11:7838.
Article
65. Benson CA, Olson KL, Patwa S, Kauer SD, King JF, Waxman SG, et al. Conditional astrocyte Rac1KO attenuates hyperreflexia after spinal cord injury. J Neurosci. 2024; 44:e1670222023.
Article
66. Bandaru SP, Liu S, Waxman SG, Tan AM. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury. J Neurophysiol. 2015; 113:1598–615.
Article
67. Ryu Y, Ogata T, Nagao M, Kitamura T, Morioka K, Ichihara Y, et al. The swimming test is effective for evaluating spasticity after contusive spinal cord injury. PLoS One. 2017; 12:e0171937.
Article
68. Synowiec S, Lu J, Yu L, Goussakov I, Lieber R, Drobyshevsky A. Spinal hyper-excitability and altered muscle structure contribute to muscle hypertonia in newborns after antenatal hypoxia-ischemia in a rabbit cerebral palsy model. Front Neurol. 2019; 9:1183.
Article
69. Toda T, Ishida K, Kiyama H, Yamashita T, Lee S. Down-regulation of KCC2 expression and phosphorylation in motoneurons, and increases the number of in primary afferent projections to motoneurons in mice with post-stroke spasticity. PLoS One. 2014; 9:e114328.
Article
70. Lee S, Toda T, Kiyama H, Yamashita T. Weakened rate-dependent depression of Hoffmann’s reflex and increased motoneuron hyperactivity after motor cortical infarction in mice. Cell Death Dis. 2014; 5:e1007.
Article
71. Lamy JC, Wargon I, Mazevet D, Ghanim Z, Pradat-Diehl P, Katz R. Impaired efficacy of spinal presynaptic mechanisms in spastic stroke patients. Brain. 2009; 132(Pt 3):734–48.
Article
72. Pivik RT, Mercier L. Spinal motoneuronal excitability in hyperkinesis: H-reflex recovery function and homosynaptic depression during wakefulness. J Clin Neuropsychol. 1981; 3:215–36.
Article
73. Sabbahi M, Etnyre B, Al-Jawayed IA, Hasson S, Jankovic J. Methods of H-reflex evaluation in the early stages of Parkinson’s disease. J Clin Neurophysiol. 2002; 19:67–72.
Article
74. Sabbahi M, Etnyre B, Al-Jawayed I, Jankovic J. H-reflex recovery curves differentiate essential tremor, Parkinson’s disease, and the combination of essential tremor and Parkinson’s disease. J Clin Neurophysiol. 2002; 19:245–51.
Article
75. Zhou X, Wang Z, Lin Z, Zhu Y, Zhu D, Xie C, et al. Rate-dependent depression is impaired in amyotrophic lateral sclerosis. Neurol Sci. 2022; 43:1831–8.
Article
76. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183:109119.
Article
77. Kianmehr H, Zhang P, Luo J, Guo J, Pavkov ME, Bullard KM, et al. Potential gains in life expectancy associated with achieving treatment goals in US adults with type 2 diabetes. JAMA Netw Open. 2022; 5:e227705.
Article
78. Sun J, Wang Y, Zhang X, Zhu S, He H. Prevalence of peripheral neuropathy in patients with diabetes: a systematic review and meta-analysis. Prim Care Diabetes. 2020; 14:435–44.
Article
79. Rajbhandari SM, Jarratt JA, Griffiths PD, Ward JD. Diabetic neuropathic pain in a leg amputated 44 years previously. Pain. 1999; 83:627–9.
Article
80. Singleton JR, Foster-Palmer S, Marcus RL. Exercise as treatment for neuropathy in the setting of diabetes and prediabetic metabolic syndrome: a review of animal models and human trials. Curr Diabetes Rev. 2022; 18:e230921196752.
Article
81. Abbott CA, Malik RA, van Ross ER, Kulkarni J, Boulton AJ. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care. 2011; 34:2220–4.
Article
82. Truini A, Aleksovska K, Anderson CC, Attal N, Baron R, Bennett DL, et al. Joint European Academy of Neurology-European Pain Federation-Neuropathic Pain Special Interest Group of the International Association for the Study of Pain guidelines on neuropathic pain assessment. Eur J Neurol. 2023; 30:2177–96.
Article
83. Dworkin RH, O’Connor AB, Kent J, Mackey SC, Raja SN, Stacey BR, et al. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain. 2013; 154:2249–61.
Article
84. National Institute for Health and Care Excellence (NICE). Neuropathic pain in adults: pharmacological management in non-specialist settings. London: NICE;2020.
85. Goodman CW, Brett AS. A clinical overview of off-label use of gabapentinoid drugs. JAMA Intern Med. 2019; 179:695–701.
Article
86. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015; 14:162–73.
Article
87. Mathieson S, Lin CC, Underwood M, Eldabe S. Pregabalin and gabapentin for pain. BMJ. 2020; 369:m1315.
Article
88. Wiffen PJ, Derry S, Moore RA, Aldington D, Cole P, Rice AS, et al. Antiepileptic drugs for neuropathic pain and fibromyalgia: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2013; 2013:CD010567.
89. Bril V. The perfect clinical trial. Int Rev Neurobiol. 2016; 127:27–41.
Article
90. Jolivalt CG, Frizzi KE, Guernsey L, Marquez A, Ochoa J, Rodriguez M, et al. Peripheral neuropathy in mouse models of diabetes. Curr Protoc Mouse Biol. 2016; 6:223–55.
Article
91. Zilliox LA, Ruby SK, Singh S, Zhan M, Russell JW. Clinical neuropathy scales in neuropathy associated with impaired glucose tolerance. J Diabetes Complications. 2015; 29:372–7.
Article
92. Vinik EJ, Hayes RP, Oglesby A, Bastyr E, Barlow P, Ford-Molvik SL, et al. The development and validation of the Norfolk QOL-DN, a new measure of patients’ perception of the effects of diabetes and diabetic neuropathy. Diabetes Technol Ther. 2005; 7:497–508.
Article
93. Calcutt NA. Diabetic neuropathy and neuropathic pain: a (con)fusion of pathogenic mechanisms? Pain. 2020; 161(Suppl 1):S65–86.
Article
94. Mooshage CM, Tsilingiris D, Schimpfle L, Seebauer L, Eldesouky O, Aziz-Safaie T, et al. A diminished sciatic nerve structural integrity is associated with distinct peripheral sensory phenotypes in individuals with type 2 diabetes. Diabetologia. 2024; 67:275–89.
Article
95. Raputova J, Rajdova A, Vollert J, Srotova I, Rebhorn C, Uceyler N, et al. Continuum of sensory profiles in diabetes mellitus patients with and without neuropathy and pain. Eur J Pain. 2022; 26:2198–212.
Article
96. Tsilingiris D, Schimpfle L, von Rauchhaupt E, Sulaj A, Seebauer L, Herzig S, et al. Sensory phenotypes provide insight into the natural course of diabetic polyneuropathy. Diabetes. 2024; 73:135–46.
Article
97. Soliman N, Kersebaum D, Lawn T, Sachau J, Sendel M, Vollert J. Improving neuropathic pain treatment: by rigorous stratification from bench to bedside. J Neurochem. 2024; 168:3699–714.
98. Serra J, Duan WR, Locke C, Sola R, Liu W, Nothaft W. Effects of a T-type calcium channel blocker, ABT-639, on spontaneous activity in C-nociceptors in patients with painful diabetic neuropathy: a randomized controlled trial. Pain. 2015; 156:2175–83.
99. Austin TM, Delpire E. Inhibition of KCC2 in mouse spinal cord neurons leads to hypersensitivity to thermal stimulation. Anesth Analg. 2011; 113:1509–15.
Article
100. Velazquez-Flores MA, Sanchez-Chavez G, Morales-Lazaro SL, Ruiz Esparza-Garrido R, Canizales-Ontiveros A, Salceda R. Streptozotocin-induced diabetic rats showed a differential glycine receptor expression in the spinal cord: a GlyR role in diabetic neuropathy. Neurochem Res. 2024; 49:684–91.
Article
101. Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 2003; 424:938–42.
Article
102. Hu Z, Yu X, Chen P, Jin K, Zhou J, Wang G, et al. BDNF-TrkB signaling pathway-mediated microglial activation induces neuronal KCC2 downregulation contributing to dynamic allodynia following spared nerve injury. Mol Pain. 2023; 19:174480–69231185439.
Article
103. Malmberg AB, O’Connor WT, Glennon JC, Cesena R, Calcutt NA. Impaired formalin-evoked changes of spinal amino acid levels in diabetic rats. Brain Res. 2006; 1115:48–53.
Article
104. Lee-Kubli CA, Calcutt NA. Altered rate-dependent depression of the spinal H-reflex as an indicator of spinal disinhibition in models of neuropathic pain. Pain. 2014; 155:250–60.
Article
105. Zilliox LA. Diabetes and peripheral nerve disease. Clin Geriatr Med. 2021; 37:253–67.
Article
106. Jolivalt CG, Lee CA, Ramos KM, Calcutt NA. Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters. Pain. 2008; 140:48–57.
Article
107. Marshall AG, Lee-Kubli C, Azmi S, Zhang M, Ferdousi M, Mixcoatl-Zecuatl T, et al. Spinal disinhibition in experimental and clinical painful diabetic neuropathy. Diabetes. 2017; 66:1380–90.
Article
108. Lee-Kubli C, Marshall AG, Malik RA, Calcutt NA. The H-reflex as a biomarker for spinal disinhibition in painful diabetic neuropathy. Curr Diab Rep. 2018; 18:1.
Article
109. Hernandez-Reyes JE, Salinas-Abarca AB, Vidal-Cantu GC, Raya-Tafolla G, Elias-Vinas D, Granados-Soto V, et al. α5GABAA receptors play a pronociceptive role and avoid the rate-dependent depression of the Hoffmann reflex in diabetic neuropathic pain and reduce primary afferent excitability. Pain. 2019; 160:1448–58.
Article
110. Lee-Kubli CA, Zhou X, Jolivalt CG, Calcutt NA. Pharmacological modulation of rate-dependent depression of the spinal H-reflex predicts therapeutic efficacy against painful diabetic neuropathy. Diagnostics (Basel). 2021; 11:283.
Article
111. Jolivalt CG, Rodriguez M, Wahren J, Calcutt NA. Efficacy of a long-acting C-peptide analogue against peripheral neuropathy in streptozotocin-diabetic mice. Diabetes Obes Metab. 2015; 17:781–8.
Article
112. Nguyen GL, Putnam S, Haile M, Raza Z, Bremer M, Wilkinson KA. Diet-induced obesity decreases rate-dependent depression in the Hoffmann’s reflex in adult mice. Physiol Rep. 2019; 7:e14271.
Article
113. Gilbert D, Franjic-Wurtz C, Funk K, Gensch T, Frings S, Mohrlen F. Differential maturation of chloride homeostasis in primary afferent neurons of the somatosensory system. Int J Dev Neurosci. 2007; 25:479–89.
Article
114. Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, et al. The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience. 2001; 104:933–46.
Article
115. Wilke BU, Kummer KK, Leitner MG, Kress M. Chloride: the underrated ion in nociceptors. Front Neurosci. 2020; 14:287.
116. Lee-Hotta S, Uchiyama Y, Kametaka S. Role of the BDNFTrkB pathway in KCC2 regulation and rehabilitation following neuronal injury: a mini review. Neurochem Int. 2019; 128:32–8.
Article
117. Smith PA. BDNF in neuropathic pain; the culprit that cannot be apprehended. Neuroscience. 2024; 543:49–64.
Article
118. Ge H, Guan S, Shen Y, Sun M, Hao Y, He L, et al. Dihydromyricetin affects BDNF levels in the nervous system in rats with comorbid diabetic neuropathic pain and depression. Sci Rep. 2019; 9:14619.
Article
119. Miao B, Yin Y, Mao G, Zhao B, Wu J, Shi H, et al. The implication of transient receptor potential canonical 6 in BDNF-induced mechanical allodynia in rat model of diabetic neuropathic pain. Life Sci. 2021; 273:119308.
Article
120. Obata K, Noguchi K. BDNF in sensory neurons and chronic pain. Neurosci Res. 2006; 55:1–10.
Article
121. Fernyhough P, Diemel LT, Brewster WJ, Tomlinson DR. Altered neurotrophin mRNA levels in peripheral nerve and skeletal muscle of experimentally diabetic rats. J Neurochem. 1995; 64:1231–7.
Article
122. Paul J, Zeilhofer HU, Fritschy JM. Selective distribution of GABA(A) receptor subtypes in mouse spinal dorsal horn neurons and primary afferents. J Comp Neurol. 2012; 520:3895–911.
123. Lucas O, Hilaire C, Delpire E, Scamps F. KCC3-dependent chloride extrusion in adult sensory neurons. Mol Cell Neurosci. 2012; 50:211–20.
Article
124. Bravo-Hernandez M, Corleto JA, Barragan-Iglesias P, Gonzalez-Ramirez R, Pineda-Farias JB, Felix R, et al. The α5 subunit containing GABAA receptors contribute to chronic pain. Pain. 2016; 157:613–26.
Article
125. Delgado-Lezama R, Bravo-Hernandez M, Franco-Enzastiga U, De la Luz-Cuellar YE, Alvarado-Cervantes NS, Raya-Tafolla G, et al. The role of spinal cord extrasynaptic α5 GABAA receptors in chronic pain. Physiol Rep. 2021; 9:e14984.
Article
126. Ju YH, Cho J, Park JY, Kim H, Hong EB, Park KD, et al. Tonic excitation by astrocytic GABA causes neuropathic pain by augmenting neuronal activity and glucose metabolism. Exp Mol Med. 2024; 56:1193–205.
Article
127. Gagnon M, Bergeron MJ, Lavertu G, Castonguay A, Tripathy S, Bonin RP, et al. Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat Med. 2013; 19:1524–8.
Article
128. Lorenzo LE, Godin AG, Ferrini F, Bachand K, Plasencia-Fernandez I, Labrecque S, et al. Enhancing neuronal chloride extrusion rescues α2/α3 GABAA-mediated analgesia in neuropathic pain. Nat Commun. 2020; 11:869.
Article
129. Mixcoatl-Zecuatl T, Jolivalt CG. A spinal mechanism of action for duloxetine in a rat model of painful diabetic neuropathy. Br J Pharmacol. 2011; 164:159–69.
Article
130. Zhou X, Zhu Y, Wang Z, Lin Z, Zhu D, Xie C, et al. Rate-dependent depression: a predictor of the therapeutic efficacy in treating painful diabetic peripheral neuropathy. Diabetes. 2022; 71:1272–81.
Article
131. Salinas LF, Trujillo-Condes VE, Tecuatl C, Delgado-Lezama R, Cuellar CA. Impaired rate-dependent depression of the H-reflex in type-2 diabetes, prediabetes, overweight and obesity: a cross-sectional study. Medicine (Baltimore). 2022; 101:e31046.
132. Worthington A, Kalteniece A, Ferdousi M, D’Onofrio L, Dhage S, Azmi S, et al. Optimal utility of H-reflex RDD as a biomarker of spinal disinhibition in painful and painless diabetic neuropathy. Diagnostics (Basel). 2021; 11:1247.
Article
133. Marshall A, Kalteniece A, Ferdousi M, Azmi S, Jude EB, Adamson C, et al. Spinal disinhibition: evidence for a hyperpathia phenotype in painful diabetic neuropathy. Brain Commun. 2023; 5:fcad051.
Article
134. Worthington A, Kalteniece A, Ferdousi M, D’Onofrio L, Dhage S, Azmi S, et al. Spinal inhibitory dysfunction in patients with painful or painless diabetic neuropathy. Diabetes Care. 2021; 44:1835–41.
135. Alles SR, Smith PA. Etiology and pharmacology of neuropathic pain. Pharmacol Rev. 2018; 70:315–47.
136. Alles SR, Bandet MV, Eppler K, Noh MC, Winship IR, Baker G, et al. Acute anti-allodynic action of gabapentin in dorsal horn and primary somatosensory cortex: correlation of behavioural and physiological data. Neuropharmacology. 2017; 113(Pt A):576–90.
Article
137. Wallace MS, Rowbotham MC, Katz NP, Dworkin RH, Dotson RM, Galer BS, et al. A randomized, double-blind, placebocontrolled trial of a glycine antagonist in neuropathic pain. Neurology. 2002; 59:1694–700.
Article