Int Neurourol J.  2024 Nov;28(Suppl 2):S74-81. 10.5213/inj.2448360.180.

Machine Learning Models for the Noninvasive Diagnosis of Bladder Outlet Obstruction and Detrusor Underactivity in Men With Lower Urinary Tract Symptoms

Affiliations
  • 1Acryl Advanced AI Research Center, Acryl Inc., Seoul, Korea
  • 2Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
  • 3College of Computing and Informatics, Sungkyunkwan University, Suwon, Korea

Abstract

Purpose
This study aimed to develop and evaluate machine learning models, specifically CatBoost and extreme gradient boosting (XGBoost), for diagnosing lower urinary tract symptoms (LUTS) in male patients. The objective is to differentiate between bladder outlet obstruction (BOO) and detrusor underactivity (DUA) using a comprehensive dataset that includes patient-reported outcomes, uroflowmetry measurements, and ultrasound-derived features.
Methods
The dataset used in this study was collected from male patients aged 40 and older who presented with LUTS and sought treatment at the urology department of Samsung Medical Center. We developed and trained CatBoost and XGBoost models using this dataset. These models incorporated features like prostate size, voiding parameters, and responses from questionnaires. Their performance was assessed using standard metrics such as accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUROC).
Results
The results indicated that the CatBoost models displayed greater sensitivity, rendering them effective for initial screenings by accurately identifying true positive cases. Conversely, the XGBoost models showed higher specificity and precision, making them more suitable for confirming diagnoses and reducing false positives. In terms of overall performance for both BOO and DUA, XGBoost surpassed CatBoost, achieving an AUROC of 0.826 and 0.819, respectively.
Conclusions
Integrating these machine learning models into the diagnostic workflow for LUTS can significantly enhance clinical decision-making by offering noninvasive, cost-effective, and patient-friendly diagnostic alternatives. The combined application of CatBoost and XGBoost models has the potential to improve diagnostic accuracy and provide customized treatment plans for patients, ultimately leading to better clinical outcomes.

Keyword

Artificial intelligence; Bladder outlet obstruction; Diagnosis; Lower urinary tract symptoms; Urinary bladder, Underactive
Full Text Links
  • INJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr