1. Zhang BB, Jin H, Bing YH, Zhang XY, Chu CP, Li YZ, Qiu DL. 2019; A nitric oxide-dependent presynaptic LTP at glutamatergic synapses of the PVN magnocellular neurosecretory cells
in vitro in rats. Front Cell Neurosci. 13:283. DOI:
10.3389/fncel.2019.00283. PMID:
31316353. PMCID:
PMC6610542.
2. Csáki A, Kocsis K, Halász B, Kiss J. 2000; Localization of glutamatergic/aspartatergic neurons projecting to the hypothalamic paraventricular nucleus studied by retrograde transport of [3H]D-aspartate autoradiography. Neuroscience. 101:637–655. DOI:
10.1016/S0306-4522(00)00411-5. PMID:
11113313.
3. van den Pol AN, Wuarin JP, Dudek FE. 1990; Glutamate, the dominant excitatory transmitter in neuroendocrine regulation. Science. 250:1276–1278. DOI:
10.1126/science.1978759. PMID:
1978759.
4. Decavel C, Van den Pol AN. 1990; GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol. 302:1019–1037. DOI:
10.1002/cne.903020423. PMID:
2081813.
6. Stern JE, Galarreta M, Foehring RC, Hestrin S, Armstrong WE. 1999; Differences in the properties of ionotropic glutamate synaptic currents in oxytocin and vasopressin neuroendocrine neurons. J Neurosci. 19:3367–3375. DOI:
10.1523/JNEUROSCI.19-09-03367.1999. PMID:
10212296. PMCID:
PMC6782249.
7. Panatier A, Gentles SJ, Bourque CW, Oliet SH. 2006; Activity-dependent synaptic plasticity in the supraoptic nucleus of the rat hypothalamus. J Physiol. 573:711–721. DOI:
10.1113/jphysiol.2006.109447. PMID:
16613872. PMCID:
PMC1779752.
8. Salter EW, Sunstrum JK, Matovic S, Inoue W. 2018; Chronic stress dampens excitatory synaptic gain in the paraventricular nucleus of the hypothalamus. J Physiol. 596:4157–4172. DOI:
10.1113/JP275669. PMID:
29901836. PMCID:
PMC6117590.
9. Matsuura T, Kawasaki M, Suzuki H, Fujitani T, Baba K, Nishimura H, Ikeda N, Yamanaka Y, Tsukamoto M, Yoshimi Y, Ohnishi H, Ueta Y, Sakai A. 2023; Nitric oxide synthase contributes to the maintenance of LTP in the oxytocin-mRFP1 neuron of the rat hypothalamus. J Neuroendocrinol. 35:e13340. DOI:
10.1111/jne.13340. PMID:
37776071.
11. Stanton LM, Price AJ, Manning EE. 2023; Hypothalamic corticotrophin releasing hormone neurons in stress-induced psychopathology: revaluation of synaptic contributions. J Neuroendocrinol. 35:e13268. DOI:
10.1111/jne.13268. PMID:
37078436.
13. Chappell PB, Smith MA, Kilts CD, Bissette G, Ritchie J, Anderson C, Nemeroff CB. 1986; Alterations in corticotropin-releasing factor-like immunoreactivity in discrete rat brain regions after acute and chronic stress. J Neurosci. 6:2908–2914. DOI:
10.1523/JNEUROSCI.06-10-02908.1986. PMID:
3020187. PMCID:
PMC6568795.
14. Ma XM, Lightman SL, Aguilera G. 1999; Vasopressin and corticotropin-releasing hormone gene responses to novel stress in rats adapted to repeated restraint. Endocrinology. 140:3623–3632. DOI:
10.1210/endo.140.8.6943. PMID:
10433220.
15. Bartsch JC, von Cramon M, Gruber D, Heinemann U, Behr J. 2021; Stress-induced enhanced long-term potentiation and reduced threshold for N-methyl-D-aspartate receptor- and β-adrenergic receptor-mediated synaptic plasticity in rodent ventral subiculum. Front Mol Neurosci. 14:658465. DOI:
10.3389/fnmol.2021.658465. PMID:
33967694. PMCID:
PMC8100191.
16. Chay A, Zamparo I, Koschinski A, Zaccolo M, Blackwell KT. 2016; Control of βAR- and N-methyl-D-aspartate (NMDA) receptor-dependent cAMP dynamics in hippocampal neurons. PLoS Comput Biol. 12:e1004735. DOI:
10.1371/journal.pcbi.1004735. PMID:
26901880. PMCID:
PMC4763502.
17. Han SK, Chong W, Li LH, Lee IS, Murase K, Ryu PD. 2002; Noradrenaline excites and inhibits GABAergic transmission in parvocellular neurons of rat hypothalamic paraventricular nucleus. J Neurophysiol. 87:2287–2296. DOI:
10.1152/jn.2002.87.5.2287. PMID:
11976368.
18. Inoshita T, Hirano T. 2021; Norepinephrine facilitates induction of long-term depression through β-adrenergic receptor at parallel fiber-to-Purkinje cell synapses in the flocculus. Neuroscience. 462:141–150. DOI:
10.1016/j.neuroscience.2020.05.037. PMID:
32502572.
19. Cui LN, Sun N, Li BX, Wang LF, Zhang XY, Qiu DL, Chu CP. 2020; Noradrenaline inhibits complex spikes activity via the presynaptic PKA signaling pathway in mouse cerebellar slices. Neurosci Lett. 729:135008. DOI:
10.1016/j.neulet.2020.135008. PMID:
32344107.
20. Wang JY, Weng WC, Wang TQ, Liu Y, Qiu DL, Wu MC, Chu CP. 2023; Noradrenaline depresses facial stimulation-evoked cerebellar MLI-PC synaptic transmission via α2-AR/PKA signaling cascade in vivo in mice. Sci Rep. 13:15908. DOI:
10.1038/s41598-023-42975-5. PMID:
37741947. PMCID:
PMC10517918.
21. Yamaguchi N, Mimura K, Okada S. 2019; GABA
B receptors in the hypothalamic paraventricular nucleus mediate β-adrenoceptor-induced elevations of plasma noradrenaline in rats. Eur J Pharmacol. 848:88–95. DOI:
10.1016/j.ejphar.2019.01.029. PMID:
30685430.
22. Domingos-Souza G, Martinez D, Sinkler S, Heesch CM, Kline DD. 2021; Alpha adrenergic receptor signaling in the hypothalamic paraventricular nucleus is diminished by the chronic intermittent hypoxia model of sleep apnea. Exp Neurol. 335:113517. DOI:
10.1016/j.expneurol.2020.113517. PMID:
33132201. PMCID:
PMC7750300.
23. Chu CP, Jin WZ, Bing YH, Jin QH, Kannan H, Qiu DL. 2013; Effects of stresscopin on rat hypothalamic paraventricular nucleus neurons in vitro. PLoS One. 8:e53863. DOI:
10.1371/journal.pone.0053863. PMID:
23349753. PMCID:
PMC3548845.
24. Tasker JG, Dudek FE. 1991; Electrophysiological properties of neurones in the region of the paraventricular nucleus in slices of rat hypothalamus. J Physiol. 434:271–293. DOI:
10.1113/jphysiol.1991.sp018469. PMID:
2023120. PMCID:
PMC1181417.
25. O'Dell TJ, Connor SA, Guglietta R, Nguyen PV. 2015; β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus. Learn Mem. 22:461–471. DOI:
10.1101/lm.031088.113. PMID:
26286656. PMCID:
PMC4561407.
27. O'Dell TJ, Connor SA, Gelinas JN, Nguyen PV. 2010; Viagra for your synapses: enhancement of hippocampal long-term potentiation by activation of beta-adrenergic receptors. Cell Signal. 22:728–736. DOI:
10.1016/j.cellsig.2009.12.004. PMID:
20043991. PMCID:
PMC2826554.
28. Wang M, Ramasamy VS, Kang HK, Jo J. 2020; Oleuropein promotes hippocampal LTP via intracellular calcium mobilization and Ca
2+-permeable AMPA receptor surface recruitment. Neuropharmacology. 176:108196. DOI:
10.1016/j.neuropharm.2020.108196. PMID:
32598912.
29. Park P, Georgiou J, Sanderson TM, Ko KH, Kang H, Kim JI, Bradley CA, Bortolotto ZA, Zhuo M, Kaang BK, Collingridge GL. 2021; PKA drives an increase in AMPA receptor unitary conductance during LTP in the hippocampus. Nat Commun. 12:413. DOI:
10.1038/s41467-020-20523-3. PMID:
33462202. PMCID:
PMC7814032.