Prog Med Phys.  2024 Sep;35(3):65-72. 10.14316/pmp.2024.35.3.65.

Impact of Smaller Gantry Arc Increments on Volumetric Modulated Arc Radiation Therapy in the Monaco Treatment Planning System

Affiliations
  • 1Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
  • 2Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
  • 3Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
  • 4Department of Radiation Oncology, Chung-Ang University Gwang Myeong Hospital, Gwangmyeong, Korea
  • 5Clinical Research Center, Chung-Ang University Gwang Myeong Hospital, Gwangmyeong, Korea

Abstract

Purpose
This study aims to evaluate the impact of smaller gantry arc increment (GAI) values on the plan quality and deliverability of volumetric modulated arc therapy (VMAT) for head and neck (HN) and prostate cancer cases using the Monaco treatment planning system. The study investigates whether a smaller GAI can enhance organ at risk (OAR) sparing without compromising target coverage or significantly increasing plan complexity.
Methods
VMAT plans were created for 20 patients (10 HN and 10 prostate cancer) using GAI values of 15° and 30°. Dose-volumetric parameters, such as conformity number, homogeneity and gradient indices, were assessed alongside plan complexity metrics like the modulation complexity score for VMAT (MCS v ) and monitor unit (MU). Statistical significance was determined using the Wilcoxon signed-rank test.
Results
For HN cases, a 15° increment significantly reduced the D0.03cc for the spinal cord and the Dmean for both parotid glands compared to a 30° increment, improving OAR sparing. However, no significant differences were observed in the OAR doses for prostate cases. The 15° increment resulted in higher plan complexity, reflected by a lower MCS v , but the MU difference was not significant.
Conclusions
Smaller GAI values, such as 15°, can significantly reduce OAR doses in HN VMAT plans, offering potential clinical benefits despite increased plan complexity. However, no substantial advantages were observed in prostate cases. These findings suggest that smaller GAI values may be particularly beneficial for cases requiring high modulation.

Keyword

Volumetric modulated arc radiation therapy; Treatment planning; Prostate radiotherapy; Head and neck radiotherapy; Gantry arc increment

Figure

  • Fig. 1 Sample dose distributions for representative cases in head and neck cancer with GAIs of (a) 30° and (b) 15°, and in prostate cancer with GAIs of (c) 30° and (d) 15°. GAI, gantry arc increment; PTV, planning target volume.

  • Fig. 2 Sample dose-volume histograms for representative cases in (a) head and neck and (b) prostate cancer. The dotted and solid lines represent plans using 30° and 15° gantry arc increments, respectively. PTV, planning target volume.


Reference

References

1. Palma DA, Verbakel WF, Otto K, Senan S. 2010; New developments in arc radiation therapy: a review. Cancer Treat Rev. 36:393–399. DOI: 10.1016/j.ctrv.2010.01.004. PMID: 20181430.
Article
2. Teoh M, Clark CH, Wood K, Whitaker S, Nisbet A. 2011; Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol. 84:967–996. DOI: 10.1259/bjr/22373346. PMID: 22011829. PMCID: PMC3473700.
Article
3. Otto K. 2008; Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 35:310–317. DOI: 10.1118/1.2818738. PMID: 18293586.
Article
4. Elekta AB. 2024. Monaco® XVMC and Pencil Beam Dose Calculation Reference Manual (E014439 / 02).
5. Elekta AB. 2016. Hyperion VMAT Sequencer® Technical Reference (LRMMON0006).
6. Elekta AB. 2017. Monaco® Training Guide (LTGMON0530).
7. Nithya L, Raj NA, Rathinamuthu S, Sharma K, Pandey MB. 2014; Influence of increment of gantry angle and number of arcs on esophageal volumetric modulated arc therapy planning in Monaco planning system: a planning study. J Med Phys. 39:231–237. DOI: 10.4103/0971-6203.144488. PMID: 25525311. PMCID: PMC4258731.
Article
8. Chen A, Li Z, Chen L, Lin M, Li B, Chen F. 2019; The influence of increment of gantry on VMAT plan quality for cervical cancer. J Radiat Res Appl Sci. 12:447–454. DOI: 10.1080/16878507.2019.1707400.
Article
9. Jensen K, Friborg J, Hansen CR, Samsøe E, Johansen J, Andersen M, et al. 2020; The Danish Head and Neck Cancer Group (DAHANCA) 2020 radiotherapy guidelines. Radiother Oncol. 151:149–151. DOI: 10.1016/j.radonc.2020.07.037. PMID: 32781011.
Article
10. Gillison ML, Trotti AM, Harris J, Eisbruch A, Harari PM, Adelstein DJ, et al. 2019; Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet. 393:40–50. DOI: 10.1016/S0140-6736(18)32779-X. PMID: 30449625. PMCID: PMC6541928.
11. Machtay M, Torres-Saavedra P, Thorstad WL, Nguyen-Tan PF, Siu LL, Holsinger FC, et al. 2023; Randomized phase III trial of postoperative radiotherapy with or without cetuximab for intermediate-risk Squamous Cell Carcinoma of the Head and Neck (SCCHN): NRG/RTOG 0920. Int J Radiat Oncol Biol Phys. 117:e1. DOI: 10.1016/j.ijrobp.2023.08.025.
Article
12. Li G, Li Y, Wang J, Gao X, Zhong Q, He L, et al. 2021; Guidelines for radiotherapy of prostate cancer (2020 edition). Precis Radiat Oncol. 5:160–182. DOI: 10.1002/pro6.1129.
Article
13. Schaake W, van der Schaaf A, van Dijk LV, Bongaerts AH, van den Bergh AC, Langendijk JA. 2016; Normal tissue complication probability (NTCP) models for late rectal bleeding, stool frequency and fecal incontinence after radiotherapy in prostate cancer patients. Radiother Oncol. 119:381–387. DOI: 10.1016/j.radonc.2016.04.005. PMID: 27157889.
Article
14. Chorbińska J, Krajewski W, Zdrojowy R. 2021; Urological complications after radiation therapy-nothing ventured, nothing gained: a narrative review. Transl Cancer Res. 10:1096–1118. DOI: 10.21037/tcr-20-2589. PMID: 35116437. PMCID: PMC8798528.
Article
15. Li X, Wu J, Palta M, Zhang Y, Sheng Y, Zhang J, et al. 2019; A collimator setting optimization algorithm for dual-arc volumetric modulated arc therapy in pancreas stereotactic body radiation therapy. Technol Cancer Res Treat. 18:1533033819870767. DOI: 10.1177/1533033819870767. PMID: 31426721. PMCID: PMC6702773.
Article
16. Sun W, Chen K, Li Y, Xia W, Dong L, Shi Y, et al. 2021; Optimization of collimator angles in dual-arc volumetric modulated arc therapy planning for whole-brain radiotherapy with hippocampus and inner ear sparing. Sci Rep. 11:19035. DOI: 10.1038/s41598-021-98530-7. PMID: 34561504. PMCID: PMC8463591.
Article
17. Goodall SK, Ebert MA. 2020; Recommended dose voxel size and statistical uncertainty parameters for precision of Monte Carlo dose calculation in stereotactic radiotherapy. J Appl Clin Med Phys. 21:120–130. DOI: 10.1002/acm2.13077. PMID: 33124741. PMCID: PMC7769395.
Article
18. Paddick I. 2000; A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg. 93(Suppl 3):219–222. DOI: 10.3171/jns.2000.93.supplement_3.0219. PMID: 11143252.
Article
19. International Commission on Radiation Units Measurements. 2010; ICRU report 83, prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU. 10:DOI: 10.1093/jicru/ndq002. PMID: 22234506.
20. Paddick I, Lippitz B. 2006; A simple dose gradient measurement tool to complement the conformity index. J Neurosurg. 105(Suppl):194–201. DOI: 10.3171/sup.2006.105.7.194. PMID: 18503356.
Article
21. International Commission on Radiation Units Measurements. 2014; ICRU report 91, prescribing, recording, and reporting of stereotactic treatments with small photon beams. J ICRU. 14:DOI: 10.1093/jicru/ndw040.
22. McNiven AL, Sharpe MB, Purdie TG. 2010; A new metric for assessing IMRT modulation complexity and plan deliverability. Med Phys. 37:505–515. DOI: 10.1118/1.3276775. PMID: 20229859.
Article
23. Masi L, Doro R, Favuzza V, Cipressi S, Livi L. 2013; Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy. Med Phys. 40:071718. DOI: 10.1118/1.4810969. PMID: 23822422.
Article
24. Wilcoxon F. Individual comparisons by ranking methods. 1992. Breakthroughs in statistics: methodology and distribution. Springer;New York: p. 196–202. DOI: 10.1007/978-1-4612-4380-9_16.
Full Text Links
  • PMP
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr