Ann Clin Microbiol.  2024 Sep;27(3):155-170. 10.5145/ACM.2024.27.3.2.

Malaria diagnostics: from traditional techniques to cutting-edge solutions

Affiliations
  • 1Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Korea

Abstract

Recent advancements in malaria diagnostics have revolutionized the detection and management of this deadly disease. From traditional microscopy to rapid diagnostic tests and currently, to cutting-edge molecular techniques, such as isothermal amplification and different types of polymerase chain reactions, significant progress has been witnessed in enhancing the sensitivity, specificity, and accessibility of diagnostic tools. These innovations have enabled rapid and more accurate detection of malarial parasites, especially in regions with limited healthcare infrastructure. Furthermore, integrating information technologyand artificial intelligence-based applications with point of care devices has facilitated realtime data collection and decision-making, ultimately aiding global efforts toward malaria elimination. Although conventional techniques are still employed at field sites, challenges such as high sensitivity, species specificity, cost-effectiveness, scalability, and the emergence of drug-resistant strains persist. These challenges underscore the need for continuous research and development of novel malaria diagnostics.

Keyword

Malaria; Microscopy; Molecular techniques; Points of care tests; Rapid diagnostic tests

Reference

1. Dalrymple U, Mappin B, Gething PW. Malaria mapping: understanding the global endemicity of falciparum and vivax malaria. BMC Med 2015;13:140.
2. Millar SB and Cox-Singh J. Human infections with Plasmodium knowlesi—zoonotic malaria. Clin Microbiol Infect 2015;21:640-8.
3. Akafity G, Kumi N, Ashong J. Diagnosis and management of malaria in the intensive care unit. J Intensive Med 2024;4:3-15.
4. Ayong L, Moukoko CEE, Mbacham WF. Diagnosing malaria: methods, tools, and field applicability. Methods Mol Biol 2019;2013:73-82.
5. Ippolito MM, Moser KA, Kabuya JB, Cunningham C, Juliano JJ. Antimalarial drug resistance and implications for the WHO global technical strategy. Curr Epidemiol Rep 2021;8:46-62.
6. Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev 2002;15:66-78.
7. Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH. A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg 2007;77:119-27.
8. WHO. Malaria microscopy quality assurance manual – version 2. 2nd ed. Geneva: World Health Organization;2016:158.
9. Murray CK, Gasser RA, Jr., Magill AJ, Miller RS. Update on rapid diagnostic testing for malaria. Clin Microbiol Rev 2008;21:97-110.
10. WHO. Basic malaria microscopy. part I: learner’s guide. 2nd ed. Geneva: World Health Organization;2010:90.
11. WHO. The role of RDTs in malaria control. https://www.who.int/teams/global-malariaprogramme/case-management/diagnosis/rapid-diagnostic-tests/role-in-malaria-control [Online] (last visited on 26 August 2024).
12. WHO. How malaria RDTs work. https://www.who.int/teams/global-malaria-programme/casemanagement/diagnosis/rapid-diagnostic-tests/how-malaria-rdts-work [Online] (last visited on 26 August 2024).
13. WHO. World malaria report 2018. Geneva: World Health Organization;2018:210.
14. Mukkala AN, Kwan J, Lau R, Harris D, Kain D, Boggild AK. An update on malaria rapid diagnostic tests. Curr Infect Dis Rep 2018;20:49.
15. Tan AF, Sakam SSB, Rajahram GS, William T, Abd Rachman Isnadi MF, Daim S, et al. Diagnostic accuracy and limit of detection of ten malaria parasite lactate dehydrogenasebased rapid tests for Plasmodium knowlesi and P. falciparum. Front Cell Infect Microbiol 2022;12:1023219.
16. WHO. Malaria rapid diagnostic test performance. Results of WHO product testing of malaria RDTs: round 8 (2016-2018). Geneva: World Health Oragnization;2018:172.
17. Maltha J, Gillet P, Jacobs J. Malaria rapid diagnostic tests in endemic settings. Clin Microbiol Infect 2013;19:399-407.
18. Bwire GM, Ngasala B, Kilonzi M, Mikomangwa WP, Felician FF, Kamuhabwa AAR. Diagnostic performance of CareStart malaria HRP2/pLDH test in comparison with standard microscopy for detection of uncomplicated malaria infection among symptomatic patients, Eastern Coast of Tanzania. Malar J 2019;18:354.
19. Ratsimbasoa A, Randriamanantena A, Raherinjafy R, Rasoarilalao N, Menard D. Which malaria rapid test for Madagascar? Field and laboratory evaluation of three tests and expert microscopy of samples from suspected malaria patients in Madagascar. Am J Trop Med Hyg 2007;76:481-5.
20. Abba K, Deeks JJ, Olliaro P, Naing CM, Jackson SM, Takwoingi Y, et al. Rapid diagnostic tests for diagnosing uncomplicated P. falciparum malaria in endemic countries. Cochrane Database Syst Rev 2011;2011:CD008122.
21. Abba K, Kirkham AJ, Olliaro PL, Deeks JJ, Donegan S, Garner P, et al. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries. Cochrane Database Syst Rev 2014;2014:CD011431.
22. Shapiro HM, Apte SH, Chojnowski GM, Hanscheid T, Rebelo M, Grimberg BT. Cytometry in malaria—a practical replacement for microscopy? Curr Protoc Cytom 2013;Chapter 11:11.20.1-11.20.23.
23. Grimberg BT, Erickson JJ, Sramkoski RM, Jacobberger JW, Zimmerman PA. Monitoring Plasmodium falciparum growth and development by UV flow cytometry using an optimized Hoechst-thiazole orange staining strategy. Cytometry A 2008;73:546-54.
24. Malleret B, Claser C, Ong AS, Suwanarusk R, Sriprawat K, Howland SW, et al. A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development. Sci Rep 2011;1:118.
25. Tiendrebeogo RW, Adu B, Singh SK, Dodoo D, Dziegiel MH, Mordmuller B, et al. Highthroughput tri-colour flow cytometry technique to assess Plasmodium falciparum parasitaemia in bioassays. Malar J 2014;13:412.
26. Hanscheid T, Valadas E, Grobusch MP. Automated malaria diagnosis using pigment detection. Parasitol Today 2000;16:549-51.
27. Frita R, Rebelo M, Pamplona A, Vigario AM, Mota MM, Grobusch MP, et al. Simple flow cytometric detection of haemozoin containing leukocytes and erythrocytes for research on diagnosis, immunology and drug sensitivity testing. Malar J 2011;10:74.
28. Kumar R, Verma AK, Shrivas S, Thota P, Singh MP, Rajasubramaniam S, et al. First successful field evaluation of new, one-minute haemozoin-based malaria diagnostic device. EClinicalMedicine 2020;22:100347.
29. Mendelow BV, Lyons C, Nhlangothi P, Tana M, Munster M, Wypkema E, et al. Automated malaria detection by depolarization of laser light. Br J Haematol 1999;104:499-503.
30. Kramer B, Grobusch MP, Suttorp N, Neukammer J, Rinneberg H. Relative frequency of malaria pigment-carrying monocytes of nonimmune and semi-immune patients from flow cytometric depolarized side scatter. Cytometry 2001;45:133-40.
31. Toya Y, Tougan T, Horii T, Uchihashi K. Lysercell M enhances the detection of stage-specific Plasmodium-infected red blood cells in the automated hematology analyzer XN-31 prototype. Parasitol Int 2021;80:102206.
32. Dumas C, Bienvenu AL, Girard S, Picot S, Debize G, Durand B. Automated Plasmodium detection by the Sysmex XN hematology analyzer. J Clin Pathol 2018;71:594-9.
33. Dumas C, Tirard-Collet P, Mestrallet F, Girard S, Jallades L, Picot S, et al. Flagging performance of Sysmex XN-10 haematology analyser for malaria detection. J Clin Pathol 2020;73:676-7.
34. M’Baya B, Mfune T, Samon A, Hwandih T, Munster M. Evaluation of the Sysmex XN-31 automated analyser for blood donor malaria screening at Malawi Blood Transfusion Services. Vox Sang 2022;117:346-53.
35. Kagaya W, Takehara I, Kurihara K, Maina M, Chan CW, Okomo G, et al. Potential application of the haematology analyser XN-31 prototype for field malaria surveillance in Kenya. Malar J 2022;21:252.
36. Huggett JF, O’Sullivan DM, Cowen S, Cleveland MH, Davies K, Harris K, et al. Ensuring accuracy in the development and application of nucleic acid amplification tests (NAATs) for infectious disease. Mol Aspects Med 2024;97:101275.
37. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985;230:1350-4.
38. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loopmediated isothermal amplification of DNA. Nucleic Acids Res 2000;28:E63.
39. Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol 2006;4:e204.
40. Compton J. Nucleic acid sequence-based amplification. Nature 1991;350:91-2.
41. Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep 2004;5:795-800.
42. Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. Strand displacement amplification--an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 1992;20:1691-6.
43. Kwoh DY, Davis GR, Whitfield KM, Chappelle HL, DiMichele LJ, Gingeras TR. Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc Natl Acad Sci U S A 1989;86:1173-7.
44. Fire A and Xu SQ. Rolling replication of short DNA circles. Proc Natl Acad Sci U S A 1995;92:4641-5.
45. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 2002;99:5261-6.
46. Zheng Z and Cheng Z. Chapter 4- advances in molecular diagnosis of malaria. Adv Clin Chem 2017;80:155-92.
47. Padley D, Moody AH, Chiodini PL, Saldanha J. Use of a rapid, single-round, multiplex PCR to detect malarial parasites and identify the species present. Ann Trop Med Parasitol 2003;97:131-7.
48. Kho WG, Chung JY, Sim EJ, Kim MY, Kim DW, Jongwutiwes S, et al. A multiplex polymerase chain reaction for a differential diagnosis of Plasmodium falciparum and Plasmodium vivax. Parasitol Int 2003;52:229-36.
49. Snounou G, Viriyakosol S, Jarra W, Thaithong S, Brown KN. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol Biochem Parasitol 1993;58:283-92.
50. Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA. A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am J Trop Med Hyg 1999;60:687-92.
51. Hofmann N, Mwingira F, Shekalaghe S, Robinson LJ, Mueller I, Felger I. Ultra-sensitive detection of Plasmodium falciparum by amplification of multi-copy subtelomeric targets. PLoS Med 2015;12:e1001788.
52. Snounou G and Singh B. Nested PCR analysis of Plasmodium parasites. Methods Mol Med 2002;72:189-203.
53. Zimmerman PA, Mehlotra RK, Kasehagen LJ, Kazura JW. Why do we need to know more about mixed Plasmodium species infections in humans? Trends Parasitol 2004;20:440-7.
54. Berzosa P, de Lucio A, Romay-Barja M, Herrador Z, Gonzalez V, Garcia L, et al. Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from Equatorial Guinea. Malar J 2018;17:333.
55. Wang B, Han SS, Cho C, Han JH, Cheng Y, Lee SK, et al. Comparison of microscopy, nestedPCR, and Real-Time-PCR assays using high-throughput screening of pooled samples for diagnosis of malaria in asymptomatic carriers from areas of endemicity in Myanmar. J Clin Microbiol 2014;52:1838-45.
56. Nyunt MH, Kyaw MP, Thant KZ, Shein T, Han SS, Zaw NN, et al. Effective high-throughput blood pooling strategy before DNA extraction for detection of malaria in low-transmission settings. Korean J Parasitol 2016;54:253-9.
57. Sattabongkot J, Tsuboi T, Han ET, Bantuchai S, Buates S. Loop-mediated isothermal amplification assay for rapid diagnosis of malaria infections in an area of endemicity in Thailand. J Clin Microbiol 2014;52:1471-7.
58. Miguel-Oteo M, Jiram AI, Ta-Tang TH, Lanza M, Hisam S, Rubio JM. Nested multiplex PCR for identification and detection of human Plasmodium species including Plasmodium knowlesi. Asian Pac J Trop Med 2017;10:299-304.
59. Mangold KA, Manson RU, Koay ES, Stephens L, Regner M, Thomson RB, Jr., et al. Realtime PCR for detection and identification of Plasmodium spp. J Clin Microbiol 2005;43:243540.
60. Perandin F, Manca N, Calderaro A, Piccolo G, Galati L, Ricci L, et al. Development of a realtime PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis. J Clin Microbiol 2004;42:1214-9.
61. Rougemont M, Van Saanen M, Sahli R, Hinrikson HP, Bille J, Jaton K. Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and speciesspecific real-time PCR assays. J Clin Microbiol 2004;42:5636-43.
62. Sazed SA, Kibria MG, Alam MS. An optimized real-time qPCR method for the effective detection of human malaria infections. Diagnostics (Basel) 2021;11:736.
63. Srisutham S, Saralamba N, Malleret B, Renia L, Dondorp AM, Imwong M. Four human Plasmodium species quantification using droplet digital PCR. PLoS One 2017;12:e0175771.
64. Mahendran P, Liew JWK, Amir A, Ching XT, Lau YL. Correction: droplet digital polymerase chain reaction (ddPCR) for the detection of Plasmodium knowlesi and Plasmodium vivax. Malar J 2023;22:324.
65. Han ET, Watanabe R, Sattabongkot J, Khuntirat B, Sirichaisinthop J, Iriko H, et al. Detection of four Plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis. J Clin Microbiol 2007;45:2521-8.
66. Han ET. Loop-mediated isothermal amplification test for the molecular diagnosis of malaria. Expert Rev Mol Diagn 2013;13:205-18.
67. Oriero EC, Jacobs J, Van Geertruyden JP, Nwakanma D, D’Alessandro U. Molecular-based isothermal tests for field diagnosis of malaria and their potential contribution to malaria elimination. J Antimicrob Chemother 2015;70:2-13.
68. Kolluri N, Klapperich CM, Cabodi M. Towards lab-on-a-chip diagnostics for malaria elimination. Lab Chip 2017;18:75-94.
52. Morris U and Aydin-Schmidt B. Performance and application of commercially available loopmediated isothermal amplification (LAMP) kits in malaria endemic and non-endemic settings. Diagnostics (Basel) 2021;11:336.
70. Picot S, Cucherat M, Bienvenu AL. Systematic review and meta-analysis of diagnostic accuracy of loop-mediated isothermal amplification (LAMP) methods compared with microscopy, polymerase chain reaction and rapid diagnostic tests for malaria diagnosis. Int J Infect Dis 2020;98:408-19.
71. Nguyen TK, Jun H, Louis JM, Mazigo E, Lee WJ, Youm HC, et al. Enhancing malaria detection in resource-limited areas: a high-performance colorimetric LAMP assay for Plasmodium falciparum screening. PLoS One 2024;19:e0298087.
72. Cordray MS and Richards-Kortum RR. A paper and plastic device for the combined isothermal amplification and lateral flow detection of Plasmodium DNA. Malar J 2015;14:472.
73. Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J 2014;13:99.
74. Lai MY, Ooi CH, Lau YL. Rapid detection of Plasmodium knowlesi by isothermal recombinase polymerase amplification assay. Am J Trop Med Hyg 2017;97:1597-9.
75. Lalremruata A, Nguyen TT, McCall MBB, Mombo-Ngoma G, Agnandji ST, Adegnika AA, et al. Recombinase polymerase amplification and lateral flow assay for ultrasensitive detection of low-density Plasmodium falciparum infection from controlled human malaria infection studies and naturally acquired infections. J Clin Microbiol 2020;58:e01879-19. .
76. Cordray MS and Richards-Kortum RR. Emerging nucleic acid-based tests for point-of-care detection of malaria. Am J Trop Med Hyg 2012;87:223-30.
77. Choi G and Guan W. Sample-to-answer microfluidic nucleic acid testing (NAT) on lab-on-adisc for malaria detection at point of need. Methods Mol Biol 2022;2393:297-313.
78. Kshirsagar A, Choi G, Santosh V, Harvey T, Bernhards RC, Guan W. Handheld purificationfree nucleic acid testing device for point-of-need detection of malaria from whole blood. ACS Sens 2023;8:673-83.
79. Parihar A, Parihar DS, Ranjan P, Khan R. Role of microfluidics-based point-of-care testing (POCT) for clinical applications. In: Kahn R, et al. eds. Advanced microfluidics based pointof-care diagnostics. 1st ed. Boca Raton: CRC Press; 2022. p. 22.
80. Reboud J, Xu G, Garrett A, Adriko M, Yang Z, Tukahebwa EM, et al. Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proc Natl Acad Sci U S A 2019;116:4834-42.
81. Lehnert T and Gijs MAM. Microfluidic systems for infectious disease diagnostics. Lab Chip 2024;24:1441-93.
82. Ho M, Sathishkumar N, Sklavounos AA, Sun J, Yang I, Nichols KP, et al. Digital microfluidics with distance-based detection - a new approach for nucleic acid diagnostics. Lab Chip 2023;24:63-73.
83. Das D, Lin CW, Chuang HS. LAMP-based point-of-care biosensors for rapid pathogen detection. Biosensors (Basel) 2022;12:1068.
84. Hu S, Jie Y, Jin K, Zhang Y, Guo T, Huang Q, et al. All-in-one digital microfluidics system for molecular diagnosis with loop-mediated isothermal amplification. Biosensors (Basel) 2022;12:324.
85. Chibi M, Wasswa W, Ngongoni C, Baba E, Kalu A. Leveraging innovation technologies to respond to malaria: a systematized literature review of emerging technologies. Malar J 2023;22:40.
86. Guo X, Khalid MA, Domingos I, Michala AL, Adriko M, Rowel C, et al. Smartphone-based DNA diagnostics for malaria detection using deep learning for local decision support and blockchain technology for security. Nat Electron 2021;4:615-24.
87. Laktabai J, Platt A, Menya D, Turner EL, Aswa D, Kinoti S, et al. A mobile health technology platform for quality assurance and quality improvement of malaria diagnosis by community health workers. PLoS One 2018;13:e0191968.
Full Text Links
  • ACM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr